Minimum Degree Removal Lemma Thresholds Zhihan Jin ETH Zürich Joint work with Lior Gishboliner and Benny Sudakov ### Theorem (Ruzsa-Szemerédi '78) ### Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. One of the first applications of the Szemerédi regularity lemma. ### Theorem (Ruzsa-Szemerédi '78) - One of the first applications of the Szemerédi regularity lemma. - ▶ Proves Roth's theorem: every $S \subseteq \{1, 2, ..., n\}$ with no arithmetic progression of length 3 satisfies |S| = o(n). ### Theorem (Ruzsa-Szemerédi '78) - One of the first applications of the Szemerédi regularity lemma. - ▶ Proves Roth's theorem: every $S \subseteq \{1, 2, ..., n\}$ with no arithmetic progression of length 3 satisfies |S| = o(n). - Connections to property testing: Either G is ε -close to being H-free or G[S] contains H (w.h.p.) for a random $S \subseteq V(G)$ of size $\delta_H^{-1}(\varepsilon)$. ## Theorem (Ruzsa-Szemerédi '78) ### Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. How does $\delta_H(\varepsilon)$ depend on ε ? ## Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### How does $\delta_H(\varepsilon)$ depend on ε ? ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$. ## Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### How does $\delta_H(\varepsilon)$ depend on ε ? - ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$. - ▶ $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$ iff H is bipartite. ### Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### How does $\delta_H(\varepsilon)$ depend on ε ? - ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$. - ▶ $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$ iff H is bipartite. ### Question (Fox-Wigderson '21) Can we do better if G has linear minimum degree? # Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### How does $\delta_H(\varepsilon)$ depend on ε ? - ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$. - $ightharpoonup \delta_H(\varepsilon) = \operatorname{poly}(\varepsilon)$ iff H is bipartite. ### Question (Fox-Wigderson '21) Can we do better if G has linear minimum degree? ▶ Why linear minimum degree? ### Conjecture (Erdős-Simonovits '73) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded. ### Conjecture (Erdős-Simonovits '73) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded. #### Construction (Hajnal) There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$. ### Conjecture (Erdős-Simonovits '73) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded. #### Construction (Hajnal) There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$. ### Theorem (Brandt-Thomasse '11) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G) \leq 4$. ### Conjecture (Erdős-Simonovits '73) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded. #### Construction (Hajnal) There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$. ### Theorem (Brandt-Thomasse '11) If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G) \leq 4$. ▶ $\frac{n}{3}$ is the threshold on $\delta(G)$ such that $\chi(G) < \infty$ for all K_3 -free G. ### Theorem (Allen-Böttcher-Griffiths-Kohayakawa-Morris '13) The chromatic threshold for H is $\delta_{\chi}(H) \in \{\frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1}\}$, where $\chi(H) = r$. In other words, - **any** H-free G with $\delta(G) > (\delta_{\chi}(H) + \varepsilon)$ n has $\chi(G) = O_{H,\varepsilon}(1)$; - there exists G on n vertices with $\delta(G) = (\delta_{\chi}(H) o(1))n$ with $\chi(G) \to \infty$. ### Theorem (Allen-Böttcher-Griffiths-Kohayakawa-Morris '13) The chromatic threshold for H is $\delta_{\chi}(H) \in \{\frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1}\}$, where $\chi(H) = r$. In other words, - **>** any H-free G with $\delta(G) > (\delta_{\chi}(H) + \varepsilon)$ n has $\chi(G) = O_{H,\varepsilon}(1)$; - there exists G on n vertices with $\delta(G) = (\delta_{\chi}(H) o(1))n$ with $\chi(G) \to \infty$. - ▶ Among all *r*-chromatic *H*'s, there are only *three* possible values for the chromatic thresholds. ### Theorem (Thomassen '02) If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$. ### Theorem (Thomassen '02) If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$. ### Question (Thomassen) Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices? ### Theorem (Thomassen '02) If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$. ## Question (Thomassen) Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices? Łuczak '06: Yes! ### Theorem (Thomassen '02) If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$. ### Question (Thomassen) Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices? Łuczak '06: Yes! <u>Definition</u>: The <u>homomorphism threshold</u> $\delta_{\text{hom}}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices. ### Theorem (Thomassen '02) If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$. ### Question (Thomassen) Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices? Łuczak '06: Yes! <u>Definition</u>: The <u>homomorphism threshold</u> $\delta_{\text{hom}}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices. $$\Longrightarrow \delta_{\mathsf{hom}}(K_3) = \frac{1}{3}.$$ # Theorem (Goddard-Lyle, Nikiforov '11) $$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$ ## Theorem (Goddard-Lyle, Nikiforov '11) $$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$ ## Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $$\delta_{hom}(\{C_3, C_5, \ldots, C_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}.$$ ### Theorem (Goddard-Lyle, Nikiforov '11) $$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$ ## Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $$\delta_{hom}(\{\mathit{C}_{3},\mathit{C}_{5}\ldots,\mathit{C}_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(\mathit{C}_{2k+1}) \leq \frac{1}{2k+1}.$$ Not much is known. Even $\delta_{hom}(C_5)$ is not known. ## Theorem (Goddard-Lyle, Nikiforov '11) $$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}$$. ## Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2) $$\delta_{hom}(\{C_3, C_5 \dots, C_{2k+1}\}) = \frac{1}{2k+1}$$ and $\delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}$. Not much is known. Even $\delta_{hom}(C_5)$ is not known. Theorem (Sankar '22+): $\delta_{hom}(C_5) > 0$. ## Theorem (Ruzsa-Szemerédi '78) ## Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### Definition (Fox-Wigderson '21) ## Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### Definition (Fox-Wigderson '21) The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$. # Theorem (Ruzsa-Szemerédi '78) If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$. #### Definition (Fox-Wigderson '21) - The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$. - The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$. #### Definition (Fox-Wigderson '21) - ► The polynomial removal lemma threshold $\delta_{\text{poly-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$. - ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$. #### Definition (Fox-Wigderson '21) - ► The <u>polynomial removal lemma threshold</u> $\delta_{\text{poly-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$. - ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$. Note: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$. #### Definition (Fox-Wigderson '21) - ► The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$. - ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$. Note: $\delta_{poly-rem}(H) \leq \delta_{lin-rem}(H)$. ## Theorem (Fox-Wigderson '21) - ▶ If $\delta(G) \ge (\frac{2r-5}{2r-3} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r . - There are graphs G with $\delta(G) = (\frac{2r-5}{2r-3} \alpha)n$ and εn^2 edge-disjoint copies of K_r , but only $\varepsilon^{\Omega(\log 1/\varepsilon)} n^r$ copies of K_r . #### Definition (Fox-Wigderson '21) - ► The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$. - ► The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) > \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$. Note: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$. ## Theorem (Fox-Wigderson '21) - ▶ If $\delta(G) \ge (\frac{2r-5}{2r-3} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r . - There are graphs G with $\delta(G) = (\frac{2r-5}{2r-3} \alpha)n$ and εn^2 edge-disjoint copies of K_r , but only $\varepsilon^{\Omega(\log 1/\varepsilon)} n^r$ copies of K_r . $$\Longrightarrow \delta_{\mathsf{lin-rem}}(K_r) = \delta_{\mathsf{poly-rem}}(K_r) = \frac{2r-5}{2r-3}.$$ Questions (Fox-Wigderson) #### Questions (Fox-Wigderson) ▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$? #### The removal lemma thresholds #### Questions (Fox-Wigderson) - ▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$? - ▶ Do $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ receive finitely or infinitely many values on *r*-chromatic graphs H? #### The removal lemma thresholds #### Questions (Fox-Wigderson) - ▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$? - ▶ Do $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ receive finitely or infinitely many values on r-chromatic graphs H? - Is there a relation between the removal thresholds $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ and $\delta_{\gamma}(H)$, $\delta_{\text{hom}}(H)$? <u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$. <u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$. Theorem (Gishboliner, J., Sudakov) $\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H).$ <u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H).$$ Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$ <u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H).$$ Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$ ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(\textit{C}_{2k+1}) = \frac{1}{2k+1}.$$ <u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H).$$ Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$ ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(\textit{C}_{2k+1}) = \frac{1}{2k+1}.$$ ### Corollary $\delta_{poly-rem}(H)$ receives infinitely many values on 3-chromatic H. <u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$. <u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$. ### Theorem (Gishboliner, J., Sudakov) If H is 3-chromatic, $$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$ <u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$. ### Theorem (Gishboliner, J., Sudakov) If H is 3-chromatic, $$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$ ### Corollary $\delta_{lin\text{-rem}}(H)$ receives 3 different values on 3-chromatic H. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$ where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$ ### Theorem (Gishboliner, J., Sudakov) $$\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H) \triangleq \delta_H,$$ where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$ ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$ where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$ <u>Goal</u>: If G has $\delta(G) > (\delta_H + \alpha)n$ and has $> \varepsilon n^2$ edge-disjoint H, then G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H. ▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$ where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$ - ▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$. - ▶ G is ε -far from being H-free. ### Theorem (Gishboliner, J., Sudakov) $$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$ where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$ - ▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$. - ▶ *G* is ε-far from being *H*-free. \Rightarrow *G* is ε-far from $G \rightarrow F$. <u>Goal</u>: if G has $\delta(G) > (\delta_H + \alpha)n$ and has $> \varepsilon n^2$ edge-disjoint H, then G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H. $ightharpoonup v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2. - $ightharpoonup H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2. - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$. - G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2. - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$. - G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$. - ightharpoonup H is a subgraph of some blow-up of H'. - \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$. - ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$. - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2. - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2. - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \rightarrow H'$. - ▶ *G* contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$. - ightharpoonup H is a subgraph of some blow-up of H'. - ▶ By Koväri-Sós-Turán, G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H. ### Theorem (Gishboliner, J., Sudakov) If H is 3-chromatic, $$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$ #### Theorem (Gishboliner, J., Sudakov) If H is 3-chromatic, $$\delta_{\mathit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$ ▶ Interesting case: when *H* has a critical edge but no triangle. <u>Goal</u>: $\delta_{\text{lin-rem}}(H) \leq \frac{1}{4}$ when H has a critical edge but no triangle. ► How does *H* look like? - ► How does *H* look like? - H is a bipartite graph plus one edge inside one part. - ► How does *H* look like? - ▶ *H* is a bipartite graph plus one edge inside one part. - ► How does H look like? - ▶ H is a bipartite graph plus one edge inside one part. <u>Goal</u>: $\delta_{\text{lin-rem}}(H) \leq \frac{1}{4}$ when H has a critical edge but no triangle. - ► How does H look like? - ▶ *H* is a bipartite graph plus one edge inside one part. ▶ $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}$. - ► How does H look like? - H is a bipartite graph plus one edge inside one part. - ▶ $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}$. - ightharpoonup Consider $H = C_5$. <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . ▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 . <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . - ▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 . - ▶ *G* contains at least εn^5 copies of C_5 . <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . - ▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 . - G contains at least εn^5 copies of C_5 . - ▶ Assume *G* contains $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 . ### An "ideal" proof for C_5 <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$ - ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$ - ▶ Let $G' := G \setminus E_c$. - ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$ - ▶ Let $G' := G \setminus E_c$. - ightharpoonup G' is $\{C_3, C_5\}$ -free. - ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$ - ▶ Let $G' := G \setminus E_c$. - ightharpoonup G' is $\{C_3, C_5\}$ -free. - "Ideally", $\delta(G') \geq \delta(G) \frac{\alpha^2}{100} n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$. - ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 . - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$ - ▶ Let $G' := G \setminus E_c$. - G' is $\{C_3, C_5\}$ -free. - "Ideally", $\delta(G') \geq \delta(G) \frac{\alpha^2}{100} n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$. - "Ideally", G' is bipartite (large degree implies short odd cycle). <u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - Fix any edge $ab \in L$ (or $ab \in R$). - ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - Fix any edge $ab \in L$ (or $ab \in R$). - $\triangleright > \varepsilon n^2$ such edges. - ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - ▶ Fix any edge $ab \in L$ (or $ab \in R$). - $\triangleright > \varepsilon n^2$ such edges. - ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - ▶ Fix any edge $ab \in L$ (or $ab \in R$). - $\triangleright > \varepsilon n^2$ such edges. - ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$. - Fix any edge $ab \in L$ (or $ab \in R$). - $ightharpoonup > \varepsilon n^2$ such edges. - $\Omega_{\alpha}(n^3)$ paths (x_1, x_2, x_3) with x_1, x_3 red because $\delta(G) > \frac{1}{4}n$. - $\Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, x_1, x_2, x_3, b) . - ▶ Pick $ab \in L$ (or $ab \in R$). - ▶ Pick $ab \in L$ (or $ab \in R$). - ightharpoonup Case (b): $\deg_{G'}(a,b) \leq \frac{\alpha n}{2}$. - ► $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2}$ and $|L| < \frac{n}{2}$. - ▶ Pick $ab \in L$ (or $ab \in R$). - - ► $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2}$ and $|L| < \frac{n}{2}$. <u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . - ▶ Pick $ab \in L$ (or $ab \in R$). - - $|R| \ge 2\delta(G') \deg_{G'}(a,b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$ • $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$. - ▶ Pick $ab \in L$ (or $ab \in R$). - - $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$ - $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$. - $\triangleright \Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b). - ▶ Pick $ab \in L$ (or $ab \in R$). - - $|R| \ge 2\delta(G') \deg_{G'}(a,b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$ - $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$. - $\triangleright \Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b). - $ightharpoonup \varepsilon n^2 \cdot \Omega_{\alpha}(n^3) = \Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 in total. <u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ C_5 . ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \le |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let $G' := G \setminus E_c \setminus S$. - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let $G' := G \setminus E_c \setminus S$. - ho v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$. - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let $G' := G \setminus E_c \setminus S$. - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$. - $oddgirth(G') \geq 7$. - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let $G' := G \setminus E_c \setminus S$. - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$. - ▶ $oddgirth(G') \ge 7$. - ▶ By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 . - ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$. - ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c . - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$ - ▶ Let $G' := G \setminus E_c \setminus S$. - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$. - ▶ $oddgirth(G') \ge 7$. - ▶ By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 . - ightharpoonup Consider when G' is bipartite. <u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 . ▶ Add back E_c (edge) and S (vertex) into G'. - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R) - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R) - ▶ Edge *xy* is of *type I* if $x, y \in L$ (or *R*) and is of *type II* if $x \in S$. - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R) - ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$. - ▶ Any (edge-disjoint) C₅-copy contains edge of type I or II. - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R) - ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$. - ▶ Any (edge-disjoint) C_5 -copy contains edge of type I or II. - At least $\frac{\varepsilon n^2}{2}$ edges are of type I. - ▶ Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II. - ▶ Add back E_c (edge) and S (vertex) into G'. - Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R. - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R) - ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$. - ▶ Any (edge-disjoint) C_5 -copy contains edge of type I or II. - At least $\frac{\varepsilon n^2}{2}$ edges are of type I. - ▶ Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II. <u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I. ► Same as in the "ideal" proof: pick ab of type I. <u>Case 2:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type II. ▶ At most |S|n edges are of type II. - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$. <u>Case 2:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type II. - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$. ▶ Pick $b \in L$ with $ab \in E(G)$. - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$. - ▶ Pick $b \in L$ with $ab \in E(G)$. - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$. - ▶ Pick $b \in L$ with $ab \in E(G)$. - ▶ $\deg_{G'}(a') + \deg_{G'}(b') > |L| + \alpha n$. - $ightharpoonup \Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, a', x, b', b). - ▶ At most |S|n edges are of type II. - $|S| \geq \frac{\varepsilon n}{2}$. - ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$. - ▶ Pick $b \in L$ with $ab \in E(G)$. - ▶ $\deg_{G'}(a') + \deg_{G'}(b') > |L| + \alpha n$. - $ightharpoonup \Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, a', x, b', b). - $\frac{\varepsilon n^2}{2} \cdot \Omega_{\alpha}(n^3) = \Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 in case 2. ▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone? - ▶ Are $\delta_{\text{poly-rem}}(H)$ and $\delta_{\text{lin-rem}}(H)$ monotone? - ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H? - ▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone? - ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H? - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$? - ▶ Are $\delta_{\text{poly-rem}}(H)$ and $\delta_{\text{lin-rem}}(H)$ monotone? - ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H? - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$? - ▶ Is it true that $\delta_{\text{poly-rem}}(H) > \frac{1}{5}$ when H is not homomorphic to C_5 ? - ▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone? - ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H? - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$? - ▶ Is it true that $\delta_{\text{poly-rem}}(H) > \frac{1}{5}$ when H is not homomorphic to C_5 ? - ▶ Is $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(\mathcal{I}_H)$? # The End Questions? Comments? THE EHG