Minimum Degree Removal Lemma Thresholds

Zhihan Jin

ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

Theorem (Ruzsa-Szemerédi '78)

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

One of the first applications of the Szemerédi regularity lemma.

Theorem (Ruzsa-Szemerédi '78)

- One of the first applications of the Szemerédi regularity lemma.
- ▶ Proves Roth's theorem: every $S \subseteq \{1, 2, ..., n\}$ with no arithmetic progression of length 3 satisfies |S| = o(n).

Theorem (Ruzsa-Szemerédi '78)

- One of the first applications of the Szemerédi regularity lemma.
- ▶ Proves Roth's theorem: every $S \subseteq \{1, 2, ..., n\}$ with no arithmetic progression of length 3 satisfies |S| = o(n).
- Connections to property testing: Either G is ε -close to being H-free or G[S] contains H (w.h.p.) for a random $S \subseteq V(G)$ of size $\delta_H^{-1}(\varepsilon)$.

Theorem (Ruzsa-Szemerédi '78)

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$.

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

- ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$.
- ▶ $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$ iff H is bipartite.

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

- ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$.
- ▶ $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$ iff H is bipartite.

Question (Fox-Wigderson '21)

Can we do better if G has linear minimum degree?

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

How does $\delta_H(\varepsilon)$ depend on ε ?

- ▶ Best known proof gives $1/\delta \le \text{tower}(\log 1/\varepsilon)$.
- $ightharpoonup \delta_H(\varepsilon) = \operatorname{poly}(\varepsilon)$ iff H is bipartite.

Question (Fox-Wigderson '21)

Can we do better if G has linear minimum degree?

▶ Why linear minimum degree?

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$.

Theorem (Brandt-Thomasse '11)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G) \leq 4$.

Conjecture (Erdős-Simonovits '73)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G)$ is bounded.

Construction (Hajnal)

There are K_3 -free graphs G with $\delta(G)=(\frac{1}{3}-o(1))n$ and $\chi(G)\to\infty$.

Theorem (Brandt-Thomasse '11)

If G is K_3 -free and $\delta(G) > \frac{n}{3}$ then $\chi(G) \leq 4$.

▶ $\frac{n}{3}$ is the threshold on $\delta(G)$ such that $\chi(G) < \infty$ for all K_3 -free G.

Theorem (Allen-Böttcher-Griffiths-Kohayakawa-Morris '13)

The chromatic threshold for H is $\delta_{\chi}(H) \in \{\frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1}\}$, where $\chi(H) = r$. In other words,

- **any** H-free G with $\delta(G) > (\delta_{\chi}(H) + \varepsilon)$ n has $\chi(G) = O_{H,\varepsilon}(1)$;
- there exists G on n vertices with $\delta(G) = (\delta_{\chi}(H) o(1))n$ with $\chi(G) \to \infty$.

Theorem (Allen-Böttcher-Griffiths-Kohayakawa-Morris '13)

The chromatic threshold for H is $\delta_{\chi}(H) \in \{\frac{r-3}{r-2}, \frac{2r-5}{2r-3}, \frac{r-2}{r-1}\}$, where $\chi(H) = r$. In other words,

- **>** any H-free G with $\delta(G) > (\delta_{\chi}(H) + \varepsilon)$ n has $\chi(G) = O_{H,\varepsilon}(1)$;
- there exists G on n vertices with $\delta(G) = (\delta_{\chi}(H) o(1))n$ with $\chi(G) \to \infty$.
- ▶ Among all *r*-chromatic *H*'s, there are only *three* possible values for the chromatic thresholds.

Theorem (Thomassen '02)

If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$.

Theorem (Thomassen '02)

If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Theorem (Thomassen '02)

If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

Theorem (Thomassen '02)

If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

<u>Definition</u>: The <u>homomorphism threshold</u> $\delta_{\text{hom}}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.

Theorem (Thomassen '02)

If G is K_3 -free and $\delta(G) \geq (\frac{1}{3} + \varepsilon)n$ then $\chi(G) \leq C(\varepsilon)$.

Question (Thomassen)

Is G homomorphic to a K_3 -free graph on $C(\varepsilon)$ vertices?

Łuczak '06: Yes!

<u>Definition</u>: The <u>homomorphism threshold</u> $\delta_{\text{hom}}(H)$ is the infimum $\gamma > 0$ such that if G is H-free and $\delta(G) \geq \gamma n$ then G is homomorphic to an H-free graph on $C(\gamma)$ vertices.

$$\Longrightarrow \delta_{\mathsf{hom}}(K_3) = \frac{1}{3}.$$

Theorem (Goddard-Lyle, Nikiforov '11)

$$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$

Theorem (Goddard-Lyle, Nikiforov '11)

$$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2)

$$\delta_{hom}(\{C_3, C_5, \ldots, C_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}.$$

Theorem (Goddard-Lyle, Nikiforov '11)

$$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}.$$

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2)

$$\delta_{hom}(\{\mathit{C}_{3},\mathit{C}_{5}\ldots,\mathit{C}_{2k+1}\}) = \frac{1}{2k+1} \text{ and } \delta_{hom}(\mathit{C}_{2k+1}) \leq \frac{1}{2k+1}.$$

Not much is known. Even $\delta_{hom}(C_5)$ is not known.

Theorem (Goddard-Lyle, Nikiforov '11)

$$\delta_{hom}(K_r) = \frac{2r-5}{2r-3}$$
.

Theorem (Ebsen-Schacht '20, Letzter-Snyder '19 for k = 2)

$$\delta_{hom}(\{C_3, C_5 \dots, C_{2k+1}\}) = \frac{1}{2k+1}$$
 and $\delta_{hom}(C_{2k+1}) \leq \frac{1}{2k+1}$.

Not much is known. Even $\delta_{hom}(C_5)$ is not known.

Theorem (Sankar '22+): $\delta_{hom}(C_5) > 0$.

Theorem (Ruzsa-Szemerédi '78)

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

Definition (Fox-Wigderson '21)

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

Definition (Fox-Wigderson '21)

The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$.

Theorem (Ruzsa-Szemerédi '78)

If G contains εn^2 edge-disjoint copies of H, then G contains $\delta n^{v(H)}$ copies of H, where $\delta = \delta_H(\varepsilon) > 0$.

Definition (Fox-Wigderson '21)

- The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$.
- The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$.

Definition (Fox-Wigderson '21)

- ► The polynomial removal lemma threshold $\delta_{\text{poly-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$.
- ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$.

Definition (Fox-Wigderson '21)

- ► The <u>polynomial removal lemma threshold</u> $\delta_{\text{poly-rem}}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = \text{poly}(\varepsilon)$.
- ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$.

Note: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$.

Definition (Fox-Wigderson '21)

- ► The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$.
- ▶ The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) \ge \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$.

Note: $\delta_{poly-rem}(H) \leq \delta_{lin-rem}(H)$.

Theorem (Fox-Wigderson '21)

- ▶ If $\delta(G) \ge (\frac{2r-5}{2r-3} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r .
- There are graphs G with $\delta(G) = (\frac{2r-5}{2r-3} \alpha)n$ and εn^2 edge-disjoint copies of K_r , but only $\varepsilon^{\Omega(\log 1/\varepsilon)} n^r$ copies of K_r .

Definition (Fox-Wigderson '21)

- ► The polynomial removal lemma threshold $\delta_{poly-rem}(H)$ is the infimum γ such that if $\delta(G) \geq \gamma n$ then $\delta_H(\varepsilon) = poly(\varepsilon)$.
- ► The <u>linear removal lemma threshold</u> $\delta_{\text{lin-rem}}(H)$ is the infimum γ such that if $\delta(G) > \gamma n$ then $\delta_H(\varepsilon) = \Omega(\varepsilon)$.

Note: $\delta_{\text{poly-rem}}(H) \leq \delta_{\text{lin-rem}}(H)$.

Theorem (Fox-Wigderson '21)

- ▶ If $\delta(G) \ge (\frac{2r-5}{2r-3} + \alpha)n$ and G has εn^2 edge-disjoint copies of K_r , then G has $\Omega(\alpha \varepsilon n^r)$ copies of K_r .
- There are graphs G with $\delta(G) = (\frac{2r-5}{2r-3} \alpha)n$ and εn^2 edge-disjoint copies of K_r , but only $\varepsilon^{\Omega(\log 1/\varepsilon)} n^r$ copies of K_r .

$$\Longrightarrow \delta_{\mathsf{lin-rem}}(K_r) = \delta_{\mathsf{poly-rem}}(K_r) = \frac{2r-5}{2r-3}.$$

Questions (Fox-Wigderson)

Questions (Fox-Wigderson)

▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?

The removal lemma thresholds

Questions (Fox-Wigderson)

- ▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?
- ▶ Do $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ receive finitely or infinitely many values on *r*-chromatic graphs H?

The removal lemma thresholds

Questions (Fox-Wigderson)

- ▶ What are $\delta_{\text{poly-rem}}(C_{2k+1})$ and $\delta_{\text{lin-rem}}(C_{2k+1})$?
- ▶ Do $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ receive finitely or infinitely many values on r-chromatic graphs H?
- Is there a relation between the removal thresholds $\delta_{\text{poly-rem}}(H)$, $\delta_{\text{lin-rem}}(H)$ and $\delta_{\gamma}(H)$, $\delta_{\text{hom}}(H)$?

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

Theorem (Gishboliner, J., Sudakov)

 $\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H).$

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H).$$

Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H).$$

Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(\textit{C}_{2k+1}) = \frac{1}{2k+1}.$$

<u>Definition</u>: \mathcal{I}_H is the set of minimal graphs H' such that $H \to H'$.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H).$$

Note that $\mathcal{I}_{C_{2k+1}} = \{C_3, C_5, \dots, C_{2k+1}\}.$

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(\textit{C}_{2k+1}) = \frac{1}{2k+1}.$$

Corollary

 $\delta_{poly-rem}(H)$ receives infinitely many values on 3-chromatic H.

<u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$.

<u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,

$$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$

<u>Definition</u>: edge xy of H is <u>critical</u> if $\chi(H - xy) < \chi(H)$.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,

$$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$

Corollary

 $\delta_{lin\text{-rem}}(H)$ receives 3 different values on 3-chromatic H.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$

where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$

Theorem (Gishboliner, J., Sudakov)

$$\delta_{poly-rem}(H) \leq \delta_{hom}(\mathcal{I}_H) \triangleq \delta_H,$$

where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$

where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$

<u>Goal</u>: If G has $\delta(G) > (\delta_H + \alpha)n$ and has $> \varepsilon n^2$ edge-disjoint H, then G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H.

▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$

where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$

- ▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$.
- ▶ G is ε -far from being H-free.

Theorem (Gishboliner, J., Sudakov)

$$\delta_{\textit{poly-rem}}(H) \leq \delta_{\textit{hom}}(\mathcal{I}_H) \triangleq \delta_H,$$

where $\mathcal{I}_H = \{H' : H \to H', H' \text{ is minimal}\}.$

- ▶ $\exists F$, which is \mathcal{I}_H free and $v(F) = O_{\alpha}(1)$, such that: \tilde{G} is \mathcal{I}_H -free and $\delta(\tilde{G}) > (\delta_H + \alpha)v(\tilde{G}) \Longrightarrow \tilde{G} \to F$.
- ▶ *G* is ε-far from being *H*-free. \Rightarrow *G* is ε-far from $G \rightarrow F$.

<u>Goal</u>: if G has $\delta(G) > (\delta_H + \alpha)n$ and has $> \varepsilon n^2$ edge-disjoint H, then G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H.

 $ightharpoonup v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.
 - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.
 - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2.
 - $ightharpoonup H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.
 - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2.
 - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$.
- G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.
 - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2.
 - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \to H'$.
- G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$.
 - ightharpoonup H is a subgraph of some blow-up of H'.

- \triangleright $v(F) = O_{\alpha}(1)$ and G is ε -far from $G \to F$.
- ▶ Take a uniform sample $S \subset V(G)$ of size $q = \text{poly}(H, 1/\varepsilon)$.
 - $\delta(G[S]) > (\delta_H + \alpha)q$ with probability > 1/2.
 - ▶ By [Nakar-Ron], $G[S] \rightarrow F$ with probability > 1/2.
 - ▶ $H' \leq G[S]$ for some $H' \in \mathcal{I}_H$, i.e. $H \rightarrow H'$.
- ▶ *G* contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H')}$ copies of H', where $H \to H'$.
 - ightharpoonup H is a subgraph of some blow-up of H'.
- ▶ By Koväri-Sós-Turán, G contains $\varepsilon^{O_{H,\alpha}(1)} n^{\nu(H)}$ copies of H.

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,

$$\delta_{\textit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$

Theorem (Gishboliner, J., Sudakov)

If H is 3-chromatic,

$$\delta_{\mathit{lin-rem}}(H) = \begin{cases} \frac{1}{2} & \textit{H has no critical edge}, \\ \frac{1}{3} & \textit{H has a critical edge and contains a triangle}, \\ \frac{1}{4} & \textit{H has a critical edge but no triangle}. \end{cases}$$

▶ Interesting case: when *H* has a critical edge but no triangle.

<u>Goal</u>: $\delta_{\text{lin-rem}}(H) \leq \frac{1}{4}$ when H has a critical edge but no triangle.

► How does *H* look like?

- ► How does *H* look like?
- H is a bipartite graph plus one edge inside one part.

- ► How does *H* look like?
- ▶ *H* is a bipartite graph plus one edge inside one part.

- ► How does H look like?
- ▶ H is a bipartite graph plus one edge inside one part.

<u>Goal</u>: $\delta_{\text{lin-rem}}(H) \leq \frac{1}{4}$ when H has a critical edge but no triangle.

- ► How does H look like?
- ▶ *H* is a bipartite graph plus one edge inside one part.

▶ $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}$.

- ► How does H look like?
- H is a bipartite graph plus one edge inside one part.

- ▶ $H \to C_{2k+1}$ for some $k \ge 2$ with $A_1 = \{x\}, A_2 = \{y\}$.
- ightharpoonup Consider $H = C_5$.

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 .

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

- ▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 .
 - ▶ *G* contains at least εn^5 copies of C_5 .

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

- ▶ If G contains $> \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 .
 - G contains at least εn^5 copies of C_5 .
- ▶ Assume *G* contains $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 .

An "ideal" proof for C_5

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .

- ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .
 - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$

- ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .
 - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$
- ▶ Let $G' := G \setminus E_c$.

- ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .
 - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$
- ▶ Let $G' := G \setminus E_c$.
 - ightharpoonup G' is $\{C_3, C_5\}$ -free.

- ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .
 - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$
- ▶ Let $G' := G \setminus E_c$.
 - ightharpoonup G' is $\{C_3, C_5\}$ -free.
 - "Ideally", $\delta(G') \geq \delta(G) \frac{\alpha^2}{100} n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$.

- ▶ Let E_c be the set of edges in these edge-disjoint C_3 and C_5 .
 - $|E_c| < 5\varepsilon^{0.1}n^2 < \frac{\alpha^2}{100}n^2.$
- ▶ Let $G' := G \setminus E_c$.
 - G' is $\{C_3, C_5\}$ -free.
 - "Ideally", $\delta(G') \geq \delta(G) \frac{\alpha^2}{100} n^2/n > (\frac{1}{4} + \frac{\alpha}{2})n$.
 - "Ideally", G' is bipartite (large degree implies short odd cycle).

<u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.

- ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).

- ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - $\triangleright > \varepsilon n^2$ such edges.

- ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- ▶ Fix any edge $ab \in L$ (or $ab \in R$).
 - $\triangleright > \varepsilon n^2$ such edges.

- ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- ▶ Fix any edge $ab \in L$ (or $ab \in R$).
 - $\triangleright > \varepsilon n^2$ such edges.

- ▶ Each C_5 in G contains edge $ab \in L$ or $ab \in R$.
- Fix any edge $ab \in L$ (or $ab \in R$).
 - $ightharpoonup > \varepsilon n^2$ such edges.

- $\Omega_{\alpha}(n^3)$ paths (x_1, x_2, x_3) with x_1, x_3 red because $\delta(G) > \frac{1}{4}n$.
- $\Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, x_1, x_2, x_3, b) .

- ▶ Pick $ab \in L$ (or $ab \in R$).

- ▶ Pick $ab \in L$ (or $ab \in R$).
- ightharpoonup Case (b): $\deg_{G'}(a,b) \leq \frac{\alpha n}{2}$.
 - ► $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2}$ and $|L| < \frac{n}{2}$.

- ▶ Pick $ab \in L$ (or $ab \in R$).
- - ► $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2}$ and $|L| < \frac{n}{2}$.

<u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

- ▶ Pick $ab \in L$ (or $ab \in R$).
- - $|R| \ge 2\delta(G') \deg_{G'}(a,b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$

• $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$.

- ▶ Pick $ab \in L$ (or $ab \in R$).
- - $|R| \ge 2\delta(G') \deg_{G'}(a, b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$

- $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$.
- $\triangleright \Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b).

- ▶ Pick $ab \in L$ (or $ab \in R$).
- - $|R| \ge 2\delta(G') \deg_{G'}(a,b) > \frac{n}{2} \text{ and } |L| < \frac{n}{2}.$

- $\deg_{G'}(a') + \deg_{G'}(b') > (\frac{1}{2} + \alpha)n > |L| + \alpha n$.
- $\triangleright \Omega_{\alpha}(n^3)$ C_5 's of form (a, a', x, b', b).
- $ightharpoonup \varepsilon n^2 \cdot \Omega_{\alpha}(n^3) = \Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 in total.

<u>Goal</u>: If G has $\delta(G) > (\frac{1}{4} + \alpha)n$, $> \varepsilon n^2$ edge-disjoint C_5 and $< \varepsilon^{0.1} n^2$ edge-disjoint C_3 or C_5 , then G contains $\Omega_{\alpha}(\varepsilon n^5)$ C_5 .

▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \le |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$
- ▶ Let $G' := G \setminus E_c \setminus S$.

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$
- ▶ Let $G' := G \setminus E_c \setminus S$.
 - ho v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$
- ▶ Let $G' := G \setminus E_c \setminus S$.
 - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.
 - $oddgirth(G') \geq 7$.

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$
- ▶ Let $G' := G \setminus E_c \setminus S$.
 - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.
 - ▶ $oddgirth(G') \ge 7$.
- ▶ By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 .

- ▶ Let E_c be the set of edges in these C_3 and C_5 . $|E_c| < \frac{\alpha^2}{100} n^2$.
- ▶ Let S be the set of vertices incident to at least $\frac{\alpha}{10}n$ edges in E_c .
 - $|S| \leq |E_c|/\tfrac{\alpha n}{10} = \tfrac{\alpha}{10} n.$
- ▶ Let $G' := G \setminus E_c \setminus S$.
 - ightharpoonup v(G') pprox v(G) and $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})v(G')$.
 - ▶ $oddgirth(G') \ge 7$.
- ▶ By [Letzer-Snyder], G' is bipartite or homomorphic to C_7 .
- ightharpoonup Consider when G' is bipartite.

<u>Goal</u>: If G has $> \varepsilon n^2$ edge-disjoint C_5 and G' has $\delta(G') > (\frac{1}{4} + \frac{\alpha}{2})n$ and is bipartite with bipartition $L \sqcup R$, then G contains $\Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 .

▶ Add back E_c (edge) and S (vertex) into G'.

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R)

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R)
- ▶ Edge *xy* is of *type I* if $x, y \in L$ (or *R*) and is of *type II* if $x \in S$.

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R)
- ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C₅-copy contains edge of type I or II.

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R)
- ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C_5 -copy contains edge of type I or II.
 - At least $\frac{\varepsilon n^2}{2}$ edges are of type I.
 - ▶ Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

- ▶ Add back E_c (edge) and S (vertex) into G'.
- Assume every $u \in S$ has at least $\frac{\alpha}{5}n$ neighbors in L and in R.
 - ▶ Otherwise, put u into L if $deg_G(L) < \frac{\alpha}{5}n$. (Same for R)
- ▶ Edge xy is of type I if $x, y \in L$ (or R) and is of type II if $x \in S$.
- ▶ Any (edge-disjoint) C_5 -copy contains edge of type I or II.
 - At least $\frac{\varepsilon n^2}{2}$ edges are of type I.
 - ▶ Or at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

<u>Case 1:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type I.

► Same as in the "ideal" proof: pick ab of type I.

<u>Case 2:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

▶ At most |S|n edges are of type II.

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.
- ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

<u>Case 2:</u> at least $\frac{\varepsilon n^2}{2}$ edges are of type II.

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.
- ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

▶ Pick $b \in L$ with $ab \in E(G)$.

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.
- ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

- ▶ Pick $b \in L$ with $ab \in E(G)$.

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.
- ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

- ▶ Pick $b \in L$ with $ab \in E(G)$.
- ▶ $\deg_{G'}(a') + \deg_{G'}(b') > |L| + \alpha n$.
- $ightharpoonup \Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, a', x, b', b).

- ▶ At most |S|n edges are of type II.
 - $|S| \geq \frac{\varepsilon n}{2}$.
- ▶ Pick $a \in S$. Say $|L| \leq \frac{n}{2}$.

- ▶ Pick $b \in L$ with $ab \in E(G)$.
- ▶ $\deg_{G'}(a') + \deg_{G'}(b') > |L| + \alpha n$.
- $ightharpoonup \Omega_{\alpha}(n^3)$ copies of C_5 's of form (a, a', x, b', b).
- $\frac{\varepsilon n^2}{2} \cdot \Omega_{\alpha}(n^3) = \Omega_{\alpha}(\varepsilon n^5)$ copies of C_5 in case 2.

▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone?

- ▶ Are $\delta_{\text{poly-rem}}(H)$ and $\delta_{\text{lin-rem}}(H)$ monotone?
- ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H?

- ▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone?
- ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H?
 - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$?

- ▶ Are $\delta_{\text{poly-rem}}(H)$ and $\delta_{\text{lin-rem}}(H)$ monotone?
- ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H?
 - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$?
 - ▶ Is it true that $\delta_{\text{poly-rem}}(H) > \frac{1}{5}$ when H is not homomorphic to C_5 ?

- ▶ Are $\delta_{poly-rem}(H)$ and $\delta_{lin-rem}(H)$ monotone?
- ▶ What are the possible values of $\delta_{poly-rem}(H)$ for 3-chromatic H?
 - ▶ Is there a graph H with $\frac{1}{5} < \delta_{\text{poly-rem}}(H) < \frac{1}{3}$?
 - ▶ Is it true that $\delta_{\text{poly-rem}}(H) > \frac{1}{5}$ when H is not homomorphic to C_5 ?
- ▶ Is $\delta_{\text{poly-rem}}(H) = \delta_{\text{hom}}(\mathcal{I}_H)$?

The End

Questions? Comments?

THE EHG