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Helly’s theorem

Theorem (Helly 1923)

Let K1,K2, . . . ,Kn be convex sets in Rd. If every d+ 1 of them
intersect, then all the sets intersect.

• d+ 1 is tight: consider n hyperplanes in general position.
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Helly number

• F is a fixed family of sets.

Question
Is there h < ∞ such that the following holds?
Let K1,K2, . . . ,Kn ∈ F be arbitrary. If every h of them intersect,
then all the sets intersect.

• The Helly number of family F is the minimum such h.
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Examples of Helly numbers

• Let F be the family of all subtrees of a fixed tree T .
The Helly number is 2.

• Let F be the family of K ∩ Zd for all convex K ⊆ Rd.
Doignon showed its Helly number is 2d.

• Let F be a family of subsets in Rd such that any
subfamily-intersection is a union of k convex sets in Rd.
The Helly number is Ok,d(1) by Alon-Kalai and Matoušek.
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Hamming balls

• What about discrete objects?

• The Hamming distance dist(a, b) := |{k ∈ [n] : ak ̸= bk}|.
• The Hamming ball centered at p ∈ Rn of radius t is

B(p, t) := {q ∈ Rn : dist(p, q) ≤ t}.

Question
Determine the Helly number for Hamming balls in Rn of radius t.

The case when Rn is replaced by {0, 1}n was raised by Raman,
Subedi and Tewari in the study of online learning.
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Main result

An example when n = t+ 1:

• Consider all Hamming balls centered at p ∈ {0, 1}t+1.
• There are 2t+1 Hamming balls of radius t.
• {0, 1}t+1 \B(p, t) = {p} p is the opposite point of p.
• 2t+1 − 1 of them intersect; all of them do not intersect.

So, the Helly number is at least 2t+1. Is it tight?

Theorem (Alon, J. and Sudakov 2024+)
Let n ≥ t+ 1. The Helly number for the family of Hamming balls
of radius t in Rn is 2t+1.
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Reduction to a set-pair inequality

• Suppose the Helly number is at least h for some h ≥ 0.

• There exist Hamming balls B1, . . . , Bh:
• every h− 1 of them intersect; all of them do not intersect.

• Let ai be the center of Bi,
and bi be in the intersection of all Bjs, j ̸= i.

• dist(ai, bi) ≥ t+ 1; dist(ai, bj) ≤ t for i ̸= j.

Theorem (Alon, J. and Sudakov 2024+)
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi) ≥ t+ 1 for all i, dist(ai, bj) ≤ t for i ̸= j,

then m ≤ 2t+1.

The Helly number for Hamming balls of radius t is precisely 2t+1!
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Proof of a simplified version

Theorem
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi) ≥ t+ 1 for all i, dist(ai, bj) ≤ t for i ̸= j,

then m ≤ 2t+1.

• We will prove this by the algebraic method.
• The dimension argument:

• construct m objects (say polynomials);
• show they are linearly independent;
• derive that m ≤ dim(ambient space).

• Note: dim(ambient space) usually depends on n!
• Our strategy: construct more objects for each i ∈ [m].
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Proof of a simplified version

Theorem
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi)= t+ 1 for all i, dist(ai, bj) ≤ t for i ̸= j,

then m ≤ 2t+1.

• Di := {k ∈ [n] : ai,k ̸= bi,k}; |Di| = t+ 1.
• ∀i ∈ [m] ∀S ⊆ [n] \Di, define a multilinear polynomial

fi,S(x) :=
∏

k∈S∪Di

(xk − ai,k).

• Claim: fi,Ss are linearly independent.
• Then, m · 2n−t−1 ≤ 2n =⇒ m ≤ 2t+1. Nice!
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fi,Ss are linearly independent

Recall:
Di = {k : ai,k ̸= bi,k}, fi,S(x) =

∏
k∈S∪Di

(xk − ai,k) ∀S ⊆ [n] \Di.

Evaluation points:
xi,S ∈ Rn : xi,S,k = bi,k ∀k /∈ S, xi,S,k ∈ R \ {bi,k} ∀k ∈ S.

• fi,S(xi,S) ̸= 0.
• fi′,S′(xi,S) = 0 if (i, S) ̸= (i′, S′) and |S| ≤ |S′|.
• Upper triangular in the order of |S|.
• fi,Ss are linearly independent!
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Binary error correcting codes

Definition
Let n ≥ d ≥ 0. A binary error correcting code(ECC) is a subset of
{0, 1}n s.t. the pairwise Hamming distance is at least d.

Let An,d be the size of the largest ECC.

Theorem (Hamming bound)

An,d ≤ Hn,d := 2n∑(d−1)/2
i=0 (ni)

.

• Tightness: trivial codes, Hamming codes and Golay codes.
• Approximate tightness: BCH codes when d is a constant.
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A more general set-pair inequality

Theorem (Alon, J. and Sudakov 2024+)
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi) ≥ t+ 1 for all i, dist(ai, bj) ≤ t for i ̸= j,

then m ≤ 2t+1.

• This setting generalizes error correcting codes:
• Let n = t+ s, (ai)i be an ECC in {0, 1}t+s with distance s.

Take bi := ai ∀i.
• dist(ai, bi) = t+ s, dist(ai, bj) = t+ s− dist(ai, aj) ≤ t ∀i ̸= j.

• Our theorem can be seen as a generalized Hamming bound.
• Tight due to perfect codes:

• trivial codes, Hamming codes, Golay codes.
• When s = 1, 2, 3, 4, or s ∈ {7, 8} and t = 16.

• Tight up to Os(1) due to BCH codes.
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Further directions

Theorem (Alon, J. and Sudakov 2024+)
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi) ≥ t+ 1 for all i, dist(ai, bj) ≤ t for i ̸= j,

then m ≤ 2t+1.

The skew version:

Question
If a1, . . . , am, b1, . . . , bm ∈ Rn satisfies

dist(ai, bi) ≥ t+1 for all i, dist(ai, bj) ≤ t for 1 ≤ i < j ≤ m,

then m ≤ ???
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The End
Questions? Comments?
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