Algebraic aspects of the polynomial Littlewood–Offord problem

Zhihan Jin, 金之涵

ETH Zürich

Joint work with Matthew Kwan, Lisa Sauermann and Yiting Wang

山东大学第九届"齐鲁青年论坛"运筹所分论坛 October 24, 2024

Question

Let $\xi_1, \dots, \xi_n \in \{-1, 1\}$ be i.i.d. Rademacher random variables.

What is the probability that $\sum_{i} \xi_{i} > t$?

Question

Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d. Rademacher random variables. What is the probability that $\sum_i \xi_i > t$?

• Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.

Question

- Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.
- Good when $t \gg \sqrt{n}$.

Question

- Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.
- Good when $t \gg \sqrt{n}$.
- What can we say when $t = O(\sqrt{n})$?

Question

- Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.
- Good when $t \gg \sqrt{n}$.
- What can we say when $t = O(\sqrt{n})$?
- $\mathbb{P}[\sum_{i} \xi_{i} = t] = O(n^{-1/2}).$

Question

- Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.
- Good when $t \gg \sqrt{n}$.
- What can we say when $t = O(\sqrt{n})$?
- $\mathbb{P}[\sum_{i} \xi_{i} = t] = O(n^{-1/2}).$
 - Gaussian approximation: $\mathcal{N}(0, n)$.

Question

- Chernoff bound: $\mathbb{P}\left[\sum_{i} \xi_{i} > t\right] \leq e^{-t^{2}/2n}$.
- Good when $t \gg \sqrt{n}$.
- What can we say when $t = O(\sqrt{n})$?
- $\mathbb{P}[\sum_{i} \xi_{i} = t] = O(n^{-1/2}).$
 - Gaussian approximation: $\mathcal{N}(0, n)$.
- Can we say something about $\mathbb{P}\left[\sum_i a_i \xi_i = t\right]$ in general?

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_{t} \mathbb{P}\left[\sum_{i} a_{i} \xi_{i} = t\right] \leq \binom{n}{\lfloor n/2 \rfloor} / 2^{n} = O(n^{-1/2}).$$

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_t \mathbb{P}\left[\sum_i a_i \xi_i = t\right] \leq \binom{n}{\lfloor n/2 \rfloor} / 2^n = O(n^{-1/2}).$$

Question

Let $A \in \{-1,1\}^{n \times n}$ be a matrix of i.i.d. Rademacher entries.

What is the probability that A is singular?

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_t \mathbb{P}\left[\sum_i a_i \xi_i = t\right] \le \binom{n}{\lfloor n/2 \rfloor} / 2^n = O(n^{-1/2}).$$

Question

Let $A \in \{-1, 1\}^{n \times n}$ be a matrix of i.i.d. Rademacher entries. What is the probability that A is singular?

• $\det(A) = \sum_{i} (-1)^{n+i} \det(A_{n,i}) \cdot a_{n,i}$.

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_{t} \mathbb{P}\left[\sum_{i} a_{i} \xi_{i} = t\right] \leq \binom{n}{\lfloor n/2 \rfloor} / 2^{n} = O(n^{-1/2}).$$

Question

Let $A \in \{-1, 1\}^{n \times n}$ be a matrix of i.i.d. Rademacher entries. What is the probability that A is singular?

- $\det(A) = \sum_{i} (-1)^{n+i} \det(A_{n,i}) \cdot a_{n,i}$.
- whp "many" $\det(A_{n,i}) \neq 0$

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_{t} \mathbb{P}\left[\sum_{i} a_{i} \xi_{i} = t\right] \leq \binom{n}{\lfloor n/2 \rfloor} / 2^{n} = O(n^{-1/2}).$$

Question

Let $A \in \{-1, 1\}^{n \times n}$ be a matrix of i.i.d. Rademacher entries. What is the probability that A is singular?

- $\det(A) = \sum_{i} (-1)^{n+i} \det(A_{n,i}) \cdot a_{n,i}$.
- whp "many" $\det(A_{n,i}) \neq 0 \Rightarrow \mathbb{P}[\det(A) = 0] = o(1)$ by LO.

Theorem (Erdős–Littlewood–Offord, 1945)

Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$. Let $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ be i.i.d.

Rademacher r.v.'s. Then,

$$\sup_{t} \mathbb{P}\left[\sum_{i} a_{i} \xi_{i} = t\right] \leq \binom{n}{\lfloor n/2 \rfloor} / 2^{n} = O(n^{-1/2}).$$

Question

Let $A \in \{-1,1\}^{n \times n}$ be a matrix of i.i.d. Rademacher entries. What is the probability that A is singular?

- $\det(A) = \sum_{i} (-1)^{n+i} \det(A_{n,i}) \cdot a_{n,i}$.
- whp "many" $\det(A_{n,i}) \neq 0 \Rightarrow \mathbb{P}[\det(A) = 0] = o(1)$ by LO.
- State-of-the-art: $\mathbb{P}[\det(A) = 0] = 2^{-n+o(n)}$ by Tikhomirov.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\};$$

 $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$$
; $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_{i} \xi_{i} = t] = O(n^{-1/2}).$$

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\};$$

 $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\};$$

 $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

If
$$a_1, \ldots, a_n$$
 are distinct, then $\sup_t \mathbb{P}[\sum_i a_i \xi_i = t] = O(n^{-3/2})$.

• The worst case: $a_i = i$.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\};$$

 $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

- The worst case: $a_i = i$.
- Gaussian approximation: $\mathcal{N}(0, \sum_i i^2) \approx \mathcal{N}(0, n^3)$.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\};$$

 $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

- The worst case: $a_i = i$.
- Gaussian approximation: $\mathcal{N}(0, \sum_i i^2) \approx \mathcal{N}(0, n^3)$.
- More generally, if $\sup_t \mathbb{P}[\sum_i a_i \xi_i = t] > n^{-C}$, then almost all of a_1, \ldots, a_n have a strong additive structure.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$$
; $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

- The worst case: $a_i = i$.
- Gaussian approximation: $\mathcal{N}(0, \sum_i i^2) \approx \mathcal{N}(0, n^3)$.
- More generally, if $\sup_t \mathbb{P}[\sum_i a_i \xi_i = t] > n^{-C}$, then almost all of a_1, \ldots, a_n have a strong additive structure.
 - The inverse theorem.

Recall:
$$a_1, \ldots, a_n \in \mathbb{R} \setminus \{0\}$$
; $\xi_1, \ldots, \xi_n \in \{-1, 1\}$ are i.i.d. Rademacher r.v.'s.

Theorem (Erdős–Littlewood–Offord, 1945)

$$\sup_{t} \mathbb{P}[\sum_{i} a_i \xi_i = t] = O(n^{-1/2}).$$

Theorem (Sárközy and Szemerédi, 1965)

- The worst case: $a_i = i$.
- Gaussian approximation: $\mathcal{N}(0, \sum_i i^2) \approx \mathcal{N}(0, n^3)$.
- More generally, if $\sup_t \mathbb{P}[\sum_i a_i \xi_i = t] > n^{-C}$, then almost all of a_1, \ldots, a_n have a strong additive structure.
 - The inverse theorem. —Tao-Vu and Nguyen-Vu.

Question

What about $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z]$ if f is a degree-d polynomial?

Question

What about $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z]$ if f is a degree-d polynomial?

A combinatorial approach:

Theorem (Kwan and Sauermann 2023+)

If f is a quadratic polynomial with $\Omega(n^2)$ monomials,

$$\Rightarrow \sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le O(n^{-1/2}).$$

Question

What about $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z]$ if f is a degree-d polynomial?

A combinatorial approach:

Theorem (Kwan and Sauermann 2023+)

If f is a quadratic polynomial with $\Omega(n^2)$ monomials, $\Rightarrow \sup_z \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \leq O(n^{-1/2}).$

An approach via Gaussian approximation:

Theorem (Kane, Meka-Nguyen-Vu, 2016)

If f is a degree-d polynomial with $\Omega(n^d)$ monomials, $\Rightarrow \sup_z \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \leq (\log n)^{O_d(1)} / \sqrt{n}.$

Question

Under what condition of f, can we guarantee a better bound?

Question

Under what condition of f, can we guarantee a better bound?

Definition

Suppose f is a degree-d polynomial.

Question

Under what condition of f, can we guarantee a better bound?

Definition

Suppose f is a degree-d polynomial.

• $\operatorname{rank}(f) := \min r \text{ s.t. } f = g_1 h_1 + \dots + g_r h_r \text{ of lower degree.}$

Question

Under what condition of f, can we guarantee a better bound?

Definition

Suppose f is a degree-d polynomial.

- $\operatorname{rank}(f) := \min r \text{ s.t. } f = g_1 h_1 + \dots + g_r h_r \text{ of lower degree.}$
- f is close to rank-r if f can be made rank at most r by changing $o(n^d)$ monomials.

Question

Under what condition of f, can we guarantee a better bound?

Definition

Suppose f is a degree-d polynomial.

- $\operatorname{rank}(f) := \min r \text{ s.t. } f = g_1 h_1 + \dots + g_r h_r \text{ of lower degree.}$
- f is close to rank-r if f can be made rank at most r by changing $o(n^d)$ monomials.

Conjecture (Costello 2013)

Suppose f has degree d. Then

• either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$

Question

Under what condition of f, can we guarantee a better bound?

Definition

Suppose f is a degree-d polynomial.

- $\operatorname{rank}(f) := \min r \text{ s.t. } f = g_1 h_1 + \cdots + g_r h_r \text{ of lower degree.}$
- f is close to rank-r if f can be made rank at most r by changing $o(n^d)$ monomials.

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to being reducible).

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, ..., \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$.

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$. $\Rightarrow \mathbb{P}[f = 0] = \Omega(n^{-1/2})$.

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$. $\Rightarrow \mathbb{P}[f = 0] = \Omega(n^{-1/2}).$
- Kwan-Sah-Sawhney: False for $f = X_1 X_2 X_3 + X_4 X_5 X_6$.

Conjecture (Costello 2013)

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$. $\Rightarrow \mathbb{P}[f = 0] = \Omega(n^{-1/2}).$
- Kwan-Sah-Sawhney: False for $f = X_1 X_2 X_3 + X_4 X_5 X_6$.
 - $X_i = \xi_{i,1} + \xi_{i,2} + \dots + \xi_{i,n/6}$ for all $1 \le i \le 6$.

Conjecture (Costello 2013)

Suppose f has degree d. Then

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$. $\Rightarrow \mathbb{P}[f = 0] = \Omega(n^{-1/2}).$
- Kwan-Sah-Sawhney: False for $f = X_1 X_2 X_3 + X_4 X_5 X_6$.
 - $X_i = \xi_{i,1} + \xi_{i,2} + \dots + \xi_{i,n/6}$ for all $1 \le i \le 6$.
 - f is not close to reducible

Conjecture (Costello 2013)

Suppose f has degree d. Then

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-d/2 + o(1)};$
- or f is close to rank-1 (close to reducible).
- Let $f := (\sum_i \xi_i) \cdot g$, where $\deg(g) = d 1$. $\Rightarrow \mathbb{P}[f = 0] = \Omega(n^{-1/2}).$
- Kwan-Sah-Sawhney: False for $f = X_1 X_2 X_3 + X_4 X_5 X_6$.
 - $X_i = \xi_{i,1} + \xi_{i,2} + \dots + \xi_{i,n/6}$ for all $1 \le i \le 6$.
 - f is not close to reducible and $\mathbb{P}[f=0] = \Omega(n^{-1})$.

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)};$
- or f is close to rank-1.

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_{z} \mathbb{P}[f(\xi_1, ..., \xi_n) = z] \le n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \le n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

If $q \in \mathbb{Z}[x_1, \ldots, x_m]$ is irreducible, $\deg(q) = 2$, $\operatorname{rank}(q) \geq 2$, then the number of roots in $\{-B, -B+1, \ldots, B\}^m$ is $O(B^{m-2+o(1)})$.

• Consider $f = q(X_1, \ldots, X_m)$, where $X_i = \xi_{i,1} + \cdots + \xi_{i,n/m}$.

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_{z} \mathbb{P}[f(\xi_1, ..., \xi_n) = z] \le n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

- Consider $f = q(X_1, \ldots, X_m)$, where $X_i = \xi_{i,1} + \cdots + \xi_{i,n/m}$.
- $|X_i| = O(\sqrt{n \log n})$ whp.

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

- Consider $f = q(X_1, \ldots, X_m)$, where $X_i = \xi_{i,1} + \cdots + \xi_{i,n/m}$.
- $|X_i| = O(\sqrt{n \log n})$ whp. $\Rightarrow B = \sqrt{n \log n}$.

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

- Consider $f = q(X_1, \ldots, X_m)$, where $X_i = \xi_{i,1} + \cdots + \xi_{i,n/m}$.
- $|X_i| = O(\sqrt{n \log n})$ whp. $\Rightarrow B = \sqrt{n \log n}$.
- The "corrected" conjecture is more general!

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then

- either $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)};$
- or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

- Consider $f = q(X_1, \ldots, X_m)$, where $X_i = \xi_{i,1} + \cdots + \xi_{i,n/m}$.
- $|X_i| = O(\sqrt{n \log n})$ whp. $\Rightarrow B = \sqrt{n \log n}$.
- The "corrected" conjecture is more general!
- A very hard open problem to understand $deg(q) \geq 3!$

Theorem (J., Kwan, Sauermann and Wang, 2024+)

 $Suppose \ f \ is \ a \ quadratic \ polynomial.$

Theorem (J., Kwan, Sauermann and Wang, 2024+)

 $Suppose \ f \ is \ a \ quadratic \ polynomial.$

(1)
$$\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-1+\alpha} \text{ or } f \text{ is "close to rank-} 4\alpha^{-2} ".$$

Theorem (J., Kwan, Sauermann and Wang, 2024+)

 $Suppose\ f\ is\ a\ quadratic\ polynomial.$

- (1) $\mathbb{P}[f(\xi_1, \dots, \xi_n) = 0] \le n^{-1+\alpha} \text{ or } f \text{ is "close to rank-} 4\alpha^{-2} ".$
- (2) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-0.51}$ or f is "close to rank-1" in \mathbb{C} .

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a quadratic polynomial.

- (1) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-1+\alpha} \text{ or } f \text{ is "close to rank-} 4\alpha^{-2} ".$
- (2) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-0.51}$ or f is "close to rank-1" in \mathbb{C} .
 - Quadratic Littlewood-Offord can be used to study random symmetric ± 1 -matrices.

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a quadratic polynomial.

- (1) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-1+\alpha} \text{ or } f \text{ is "close to rank-} 4\alpha^{-2} ".$
- (2) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-0.51}$ or f is "close to rank-1" in \mathbb{C} .
 - Quadratic Littlewood-Offord can be used to study random symmetric ± 1 -matrices.
 - Kwan-Sauermann showed (1) in terms of L_1 -norm with a better dependency.

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a quadratic polynomial.

- (1) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-1+\alpha} \text{ or } f \text{ is "close to rank-} 4\alpha^{-2} ".$
- (2) $\mathbb{P}[f(\xi_1,\ldots,\xi_n)=0] \leq n^{-0.51}$ or f is "close to rank-1" in \mathbb{C} .
 - Quadratic Littlewood-Offord can be used to study random symmetric ± 1 -matrices.
 - Kwan-Sauermann showed (1) in terms of L_1 -norm with a better dependency.
 - (2) is a stability result of Costello's conjecture over C.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

• Example: when d = 2, f has form $f(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

- Example: when d = 2, f has form $f(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.
- The coefficients of f corresponds to a d-dimensional tensor.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

- Example: when d = 2, f has form $f(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.
- The coefficients of f corresponds to a d-dimensional tensor.

Theorem (Costello, 2013)

Suppose f is a bilinear form. Then $\sup_{z} \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] \leq n^{-1+o(1)}$ or f is close to rank-1.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

- Example: when d = 2, f has form $f(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.
- The coefficients of f corresponds to a d-dimensional tensor.

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a d-multilinear form. Then $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)}$ or f is close to rank-1.

Definition

f is a d-multilinear form if the variables are $(x_{i,j})_{i \in [d], j \in [n]}$ and every monomial has form $x_{1,i_1} x_{2,i_2} \dots x_{d,i_d}$.

- Example: when d = 2, f has form $f(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$.
- The coefficients of f corresponds to a d-dimensional tensor.

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a d-multilinear form. Then $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] \leq n^{-1+o(1)}$ or f is close to rank-1.

• Confirms the corrected conjecture for d-multilinear forms.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If $(1-\alpha)$ fraction of the r-by-r submatrices of A are singular,

 $\Rightarrow \exists B \ symmetric \ s.t. \ rank(B) < r \ and \ ||A - B||_0 = O(r^4 \alpha^{1/r} n^2).$

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If $(1 - \alpha)$ fraction of the r-by-r submatrices of A are singular, $\Rightarrow \exists B \text{ symmetric s.t. } \operatorname{rank}(B) < r \text{ and } ||A - B||_0 = O(r^4 \alpha^{1/r} n^2).$

• Easy if we don't need B to be symmetric.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If $(1 - \alpha)$ fraction of the r-by-r submatrices of A are singular, $\Rightarrow \exists B \text{ symmetric s.t. } \operatorname{rank}(B) < r \text{ and } ||A - B||_0 = O(r^4 \alpha^{1/r} n^2).$

- Easy if we don't need B to be symmetric.
- 1/r is the optimal constant.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If $(1 - \alpha)$ fraction of the r-by-r submatrices of A are singular, $\Rightarrow \exists B \text{ symmetric s.t. } \operatorname{rank}(B) < r \text{ and } ||A - B||_0 = O(r^4 \alpha^{1/r} n^2).$

- Easy if we don't need B to be symmetric.
- 1/r is the optimal constant.
- A property testing problem for the rank.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If $(1 - \alpha)$ fraction of the r-by-r submatrices of A are singular, $\Rightarrow \exists B \text{ symmetric s.t. } \operatorname{rank}(B) < r \text{ and } ||A - B||_0 = O(r^4 \alpha^{1/r} n^2).$

- Easy if we don't need B to be symmetric.
- 1/r is the optimal constant.
- A property testing problem for the rank.
- Sufficient to understand the rank of small submatrices.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

• Decoupling was introduced in Costello-Tao-Vu.

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\mathbb{P}[f(\vec{\xi}) = z] = \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} [f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]]$$

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\begin{split} \mathbb{P}[f(\vec{\xi}) = z] &= \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]] \\ &\leq \left(\mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I] \right]^2 \right)^{1/2} \end{split}$$

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\begin{split} \mathbb{P}[f(\vec{\xi}) = z] &= \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]] \\ &\leq \left(\mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} \left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I] \right]^2 \right)^{1/2} \\ &= \mathbb{P} \left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z \right]^{1/2}. \end{split}$$

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\begin{split} \mathbb{P}[f(\vec{\xi}) = z] &= \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]] \\ &\leq \left(\mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} \left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I] \right]^2 \right)^{1/2} \\ &= \mathbb{P} \left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z \right]^{1/2}. \end{split}$$

• $f(\vec{\xi}[I], \vec{\xi}[I^c]) - f(\vec{\xi}[I], \vec{\xi'}[I^c])$ is linear on $\vec{\xi}[I]$.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\begin{split} \mathbb{P}[f(\vec{\xi}) = z] &= \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} [f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]] \\ &\leq \left(\mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} [f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I] \right]^2 \right)^{1/2} \\ &= \mathbb{P} \big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z \big]^{1/2}. \end{split}$$

• $f(\vec{\xi}[I], \vec{\xi}[I^c]) - f(\vec{\xi}[I], \vec{\xi'}[I^c])$ is linear on $\vec{\xi}[I]$. It is $\vec{\xi}[I]^T A[I, I^c] (\vec{\xi}[I^c] - \vec{\xi'}[I^c]) + \varphi(\vec{\xi}[I^c], \vec{\xi'}[I^c])$.

- Decoupling was introduced in Costello-Tao-Vu.
- Take a uniform independent sample ξ' and $I \subseteq [n]$.

$$\begin{split} \mathbb{P}[f(\vec{\xi}) = z] &= \mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} [f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]] \\ &\leq \left(\mathbb{E}_{\vec{\xi}[I]} \mathbb{P}_{\vec{\xi}[I^c]} [f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I] \right]^2 \right)^{1/2} \\ &= \mathbb{P} \big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z \big]^{1/2}. \end{split}$$

- $f(\vec{\xi}[I], \vec{\xi}[I^c]) f(\vec{\xi}[I], \vec{\xi'}[I^c])$ is linear on $\vec{\xi}[I]$. It is $\vec{\xi}[I]^T A[I, I^c] (\vec{\xi}[I^c] - \vec{\xi'}[I^c]) + \varphi(\vec{\xi}[I^c], \vec{\xi'}[I^c])$.
- Costello used this to show $\mathbb{P}[f=z] \leq n^{-1/2+o(1)}$.

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.
$$\mathbb{P}[f(\vec{\xi}) = z]^2 \leq \mathbb{P}[f(\vec{\xi}|I|, \vec{\xi}|I^c|) = f(\vec{\xi}|I|, \vec{\xi}'|I^c|) = z].$$

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.
$$\mathbb{P}[f(\vec{\xi}) = z]^2 \le \mathbb{P}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z].$$

• Why does decoupling make sense?

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi}) = z]^2 \leq \mathbb{P}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi}'[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition $[n] = I \cup I^c$ randomly.

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition $[n] = I \cup I^c$ randomly. A is close to rank- $r \iff A[I^c, I^c]$ is close to rank-r.

$$\mathbb{P}[f(\vec{\xi}) = z]^2 \le \mathbb{P}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition $[n] = I \cup I^c$ randomly. A is close to rank- $r \iff A[I^c, I^c]$ is close to rank-r.
 - $\bullet \ \sup_z \mathbb{P}\big[f(\vec{\xi}) = z\big] \sim \sup_z \mathbb{P}_{\vec{\xi}[I^c]}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]\big].$

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition [n] = I ∪ I^c randomly.
 A is close to rank-r ⇐⇒ A[I^c, I^c] is close to rank-r.
 - $\bullet \ \sup_z \mathbb{P}\big[f(\vec{\xi}) = z\big] \sim \sup_z \mathbb{P}_{\vec{\xi}[I^c]}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]\big].$
- What did we lose?

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition [n] = I ∪ I^c randomly.
 A is close to rank-r ⇐⇒ A[I^c, I^c] is close to rank-r.
 - $\bullet \ \sup_z \mathbb{P}\big[f(\vec{\xi}) = z\big] \sim \sup_z \mathbb{P}_{\vec{\xi}[I^c]}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]\big].$
- What did we lose?
 - We only used $f(\vec{\xi}[I], \vec{\xi}[I^c]) f(\vec{\xi}[I], \vec{\xi'}[I^c]) = 0$.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition $[n] = I \cup I^c$ randomly. A is close to rank- $r \iff A[I^c, I^c]$ is close to rank-r.
 - $\bullet \ \sup_z \mathbb{P}\big[f(\vec{\xi}) = z\big] \sim \sup_z \mathbb{P}_{\vec{\xi}[I^c]}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]\big].$
- What did we lose?
 - We only used $f(\vec{\xi}[I], \vec{\xi}[I^c]) f(\vec{\xi}[I], \vec{\xi'}[I^c]) = 0.$
- Kwan-Sauermann: remember $f(\vec{\xi}[I], \vec{\xi}[I^c]) = z$ and do decoupling recursively.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z].$$

- Why does decoupling make sense?
 - Partition [n] = I ∪ I^c randomly.
 A is close to rank-r ⇐⇒ A[I^c, I^c] is close to rank-r.
 - $\bullet \ \sup_z \mathbb{P}\big[f(\vec{\xi}) = z\big] \sim \sup_z \mathbb{P}_{\vec{\xi}[I^c]}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = z | \vec{\xi}[I]\big].$
- What did we lose?
 - We only used $f(\vec{\xi}[I], \vec{\xi}[I^c]) f(\vec{\xi}[I], \vec{\xi'}[I^c]) = 0.$
- Kwan-Sauermann: remember $f(\vec{\xi}[I], \vec{\xi}[I^c]) = z$ and do decoupling recursively.
 - They used this to show $\sup_z \mathbb{P}[f(\xi_1, \dots, \xi_n) = z] = O(n^{-1/2}).$

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi}) = z]^2 \leq \mathbb{P}[f(\vec{\xi}|I), \vec{\xi}|I^c]) = f(\vec{\xi}|I), \vec{\xi}'[I^c]) = z]).$$

Setting:
$$f(\vec{x}) = \vec{x}^T A \vec{x}$$
, where $A \in \mathbb{R}^{n \times n}$ is symmetric.
$$\mathbb{P}[f(\vec{\xi}) = z]^2 \leq \mathbb{P}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi}_i[I^c]) = z, \forall i].$$

<u>Setting</u>: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi)}=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}\left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi}_i[I^c]) = z, \forall i\right].$$

• Sufficient to study $\mathbb{P}_{\vec{\xi},\Xi} \left[\vec{\xi}[I] A[I,I^c] \Xi = \varphi(\Xi) \right]$.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}\left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi_i}[I^c]) = z, \forall i\right].$$

- Sufficient to study $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi=\varphi(\Xi)]$.
 - $\Xi \in \{-1,1\}^{I^c \times [k]}$ with i.i.d. Rademacher entries.

Setting: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}\left[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi}_i[I^c]) = z, \forall i\right].$$

- Sufficient to study $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi=\varphi(\Xi)]$.
 - $\Xi \in \{-1,1\}^{I^c \times [k]}$ with i.i.d. Rademacher entries.
- Linear in $\vec{\xi}[I]$. Apply inverse theorem for linear forms!

<u>Setting</u>: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi})=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi_i}[I^c]) = z, \forall i\big].$$

- Sufficient to study $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi=\varphi(\Xi)]$.
 - $\Xi \in \{-1,1\}^{I^c \times [k]}$ with i.i.d. Rademacher entries.
- Linear in $\vec{\xi}[I]$. Apply inverse theorem for linear forms!

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

<u>Setting</u>: $f(\vec{x}) = \vec{x}^T A \vec{x}$, where $A \in \mathbb{R}^{n \times n}$ is symmetric.

$$\mathbb{P}[f(\vec{\xi)}=z]^2 \leq \mathbb{P}[f(\vec{\xi}[I],\vec{\xi}[I^c]) = f(\vec{\xi}[I],\vec{\xi'}[I^c]) = z]).$$

• Take k more copies ξ_1, \ldots, ξ_k , and apply Jensen's inequality.

$$\mathbb{P}[f(\vec{\xi}) = z]^{k+1} \le \mathbb{P}\big[f(\vec{\xi}[I], \vec{\xi}[I^c]) = f(\vec{\xi}[I], \vec{\xi_i}[I^c]) = z, \forall i\big].$$

- Sufficient to study $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi = \varphi(\Xi)].$
 - $\Xi \in \{-1,1\}^{I^c \times [k]}$ with i.i.d. Rademacher entries.
- Linear in $\vec{\xi}[I]$. Apply inverse theorem for linear forms!

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of }B\Xi \text{ lie in a GAP of rank }r \text{ and volume at most }V] \leq ?$

• We showed it is at most $V^{m+o(1)}\ell^{-k(m-r)/2}$.

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

- We showed it is at most $V^{m+o(1)}\ell^{-k(m-r)/2}$.
- Implies $\mathbb{P}[f=0] \leq n^{-1+\alpha}$ or f is close to rank $O(\alpha^{-2})$.

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

- We showed it is at most $V^{m+o(1)}\ell^{-k(m-r)/2}$.
- Implies $\mathbb{P}[f=0] \leq n^{-1+\alpha}$ or f is close to rank $O(\alpha^{-2})$.

Conjecture

It is at most $V^{m-k+o(1)}\ell^{-k(m-r)/2}$.

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

- We showed it is at most $V^{m+o(1)}\ell^{-k(m-r)/2}$.
- Implies $\mathbb{P}[f=0] \leq n^{-1+\alpha}$ or f is close to rank $O(\alpha^{-2})$.

Conjecture

It is at most $V^{m-k+o(1)}\ell^{-k(m-r)/2}$.

• If true, $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi = \varphi(\Xi)] \leq n^{-k+o(1)}$ or $A[I,I^c]$ is close to rank 2k-1.

Question

Suppose $B \in \mathbb{R}^{m \times n}$ has ℓ disjoint $m \times m$ nonsingular submatrices and $\Xi \in \{-1,1\}^{n \times k}$ contains i.i.d. Rademacher entries.

 $\mathbb{P}[\text{rows of } B\Xi \text{ lie in a GAP of rank } r \text{ and volume at most } V] \leq ?$

- We showed it is at most $V^{m+o(1)}\ell^{-k(m-r)/2}$.
- Implies $\mathbb{P}[f=0] \leq n^{-1+\alpha}$ or f is close to rank $O(\alpha^{-2})$.

Conjecture

It is at most $V^{m-k+o(1)}\ell^{-k(m-r)/2}$.

- If true, $\mathbb{P}_{\vec{\xi},\Xi}[\vec{\xi}[I]A[I,I^c]\Xi = \varphi(\Xi)] \leq n^{-k+o(1)}$ or $A[I,I^c]$ is close to rank 2k-1.
- Implies $\mathbb{P}[f=0] > n^{-1+\alpha}$ or f is close to rank $O(\alpha^{-1})$.

Many open problems:

• Prove the conjecture last page.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z]>n^{-1+o(1)}$ unless f is "close to" $g\cdot h$

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z]>n^{-1+o(1)}$ unless f is "close to" $g\cdot h$ where g is a linear form.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_z \mathbb{P}[f(\xi_1, \ldots, \xi_n) = z] > n^{-1+o(1)}$ unless f is "close to" $g \cdot h$ where g is a linear form.
 - Equivalently, the coefficient tensor of f is close to slice-rank-1.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_{z} \mathbb{P}[f(\xi_1, \ldots, \xi_n) = z] > n^{-1+o(1)}$ unless f is "close to" $g \cdot h$ where g is a linear form.
 - Equivalently, the coefficient tensor of f is close to slice-rank-1.
 - We showed that f is close to partition-rank-1.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_{z} \mathbb{P}[f(\xi_1, \ldots, \xi_n) = z] > n^{-1+o(1)}$ unless f is "close to" $g \cdot h$ where g is a linear form.
 - Equivalently, the coefficient tensor of f is close to slice-rank-1.
 - We showed that f is close to partition-rank-1.
- A complete inverse theorem for $\mathbb{P}[\vec{x}^T A \vec{y}]$.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_z \mathbb{P}[f(\xi_1,\ldots,\xi_n)=z] > n^{-1+o(1)}$ unless f is "close to" $g \cdot h$ where g is a linear form.
 - Equivalently, the coefficient tensor of f is close to slice-rank-1.
 - We showed that f is close to partition-rank-1.
- A complete inverse theorem for $\mathbb{P}[\vec{x}^T A \vec{y}]$.
- A complete inverse theorem for quadratic polynomials.

- Prove the conjecture last page.
- Prove the corrected Costello's conjecture.
- Prove that if f is a d-multilinear form, then $\sup_{z} \mathbb{P}[f(\xi_1, \ldots, \xi_n) = z] > n^{-1+o(1)}$ unless f is "close to" $g \cdot h$ where g is a linear form.
 - Equivalently, the coefficient tensor of f is close to slice-rank-1.
 - We showed that f is close to partition-rank-1.
- A complete inverse theorem for $\mathbb{P}[\vec{x}^T A \vec{y}]$.
- A complete inverse theorem for quadratic polynomials.
- . . .

The End

Questions? Comments?

The • End

Questions? Comments?