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What is the probability that ), & > t7

® Chernoff bound: P[},& > ] < e t2/2n
® Good when t > /n.

e What can we say when ¢t = O(y/n)?

* P& = 1] = O(n'/?).

® Gaussian approximation: N'(0, n).
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Concentration and anticoncentration

Question

Let &1,...,&, € {—1,1} be i.i.d. Rademacher random variables.
What is the probability that >, &; > t7

Chernoff bound: P[},& > ¢] < e t2/2n
Good when t > /n.

What can we say when t = O(y/n)?
P& = t] = O(n™'/2).

® Gaussian approximation: N'(0, n).

® Can we say something about P[>, a;&; = t] in general?
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Concentration and anticoncentration

Theorem (Erdés-Littlewood-Offord, 1945)

Let ay,...,an € R\ {0}. Let &,...,&, € {—1,1} be i.i.d.

Rademacher r.v.’s. Then,

sup; P[>, ai&s = t] < (I_TLT/LQJ)/QTL — O(n~1/2).
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Let ay,...,an € R\ {0}. Let &,...,&, € {—1,1} be i.i.d.
Rademacher r.v.’s. Then,

sup; P[>, ai&s = t] < (I_TLT/LQJ)/2TL — O(n~1/2).

Question

Let A € {—1,1}"*" be a matrix of i.i.d. Rademacher entries.
What is the probability that A is singular?
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Concentration and anticoncentration

Theorem (Erdés-Littlewood-Offord, 1945)

Let ay,...,an € R\ {0}. Let &,...,&, € {—1,1} be i.i.d.
Rademacher r.v.’s. Then,

sup; P[>, ai&s = t] < (I_’I’LT/LQJ)/2TL — O(n~1/2).

Question

Let A € {—1,1}"*" be a matrix of i.i.d. Rademacher entries.
What is the probability that A is singular?

o det(A4) = >, (—1)" " det(Ay i) - an,i-
® whp “many” det(A, ;) # 0 = P[det(A) = 0] = o(1) by LO.
e State-of-the-art: P[det(A4) = 0] = 2-"*°(") by Tikhomirov.
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Anticoncentration of linear forms

Recall: ay,...,a, € R\ {0};
&1,...,&, € {—1,1} are i.i.d. Rademacher r.v’s.
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If ai,...,ay are distinct, then sup, P[3; a;i&; = t] = O(n=3/?).

® The worst case: a; = 1.
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® More generally, if sup, P[Y; a;&; = t] > n~ ¢, then almost all
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Theorem (Erdés-Littlewood-Offord, 1945)

sup, P[>, a;&; = t] = O(n~1/2),

Theorem (Sarkoézy and Szemerédi, 1965)

If ai,...,ay are distinct, then sup, P[3; a;i&; = t] = O(n=3/?).

® The worst case: a; = 1.
® Gaussian approximation: N (0,Y, %) ~ N(0, n?).

® More generally, if sup, P[Y; a;&; = t] > n~ ¢, then almost all
of a1, ..., a, have a strong additive structure.

® The inverse theorem. =~ —Tao-Vu and Nguyen-Vu.
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Littlewood-Offord problems for polynomials

Question
What about sup, P[f(&1,...,&,)=2] if f is a degree-d polynomial?
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What about sup, P[f(&1,...,&)=2] if f is a degree-d polynomial?

A combinatorial approach:

Theorem (Kwan and Sauermann 2023+)

If f is a quadratic polynomial with Q(n?) monomials,
= sup, P[f(&1,...,&n) = 2] < O(n_l/Q),
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What about sup, P[f(&1,...,&)=2] if f is a degree-d polynomial?

A combinatorial approach:

Theorem (Kwan and Sauermann 2023+)

If f is a quadratic polynomial with Q(n?) monomials,

= sup, P[f(&1,...,&n) = 2] < O(n_l/Q).

An approach via Gaussian approximation:

Theorem (Kane, Meka-Nguyen-Vu, 2016)

If f is a degree-d polynomial with Q(n?) monomials,

= sup, Pf (&1, .., &n) = 2] < (logn) %4 /\/n.
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Littlewood-Offord problems for polynomials

Question

Under what condition of f, can we guarantee a better bound?
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Littlewood-Offord problems for polynomials

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then
o cither sup, P[f(¢1, .., &) = 4 < n~ o)

® or f is close to rank-1.
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Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then
o cither sup, P[f(¢1, .., &) = 4 < n~ o)

® or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

If g € Zlxy, . .., zp] is irreducible, deg(q) = 2,rank(q) > 2, then the
number of roots in {—B,—B+1,...,B}™ is O(Bm*2+0(1)).
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Littlewood-Offord problems for polynomials

Conjecture (Costello 2013, corrected)

Suppose f has degree d. Then
o cither sup, P[f(¢1, .., &) = 4 < n~ o)

® or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)

If g € Zlxy, . .., zp] is irreducible, deg(q) = 2,rank(q) > 2, then the
number of roots in {—B,—B+1,...,B}™ is O(Bm*2+0(1)).

Consider f = q(X1,..., Xp), where X; = &1+ -+ + & 5 /m-
| X:| = O(v/nlogn) whp. = B = /nlogn.

® The “corrected” conjecture is more general!

A very hard open problem to understand deg(q) > 3!

Zhihan Jin, X% (ETH Ziirich) Polynomial Littlewood—Offord BB/ “FEFFIRT 8/17



Our results — quadratic polynomials

Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a quadratic polynomial.
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Suppose f is a quadratic polynomial.
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Our results — quadratic polynomials

Theorem (J., Kwan, Sauermann and Wang, 2024+)
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Theorem (J., Kwan, Sauermann and Wang, 2024+)

Suppose f is a quadratic polynomial.
(1) P[f(&1,. .., &) =0] < n71F or f is “close to rank-4a~27
(2) Plf(&1,...,&) =01 < n7 %3 or f is “close to rank-1"in C.

¢ Quadratic Littlewood-Offord can be used to study random
symmetric +1-matrices.

e Kwan-Sauermann showed (1) in terms of Lj-norm with a
better dependency.

® (2) is a stability result of Costello’s conjecture over C.
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Our results — multilinear forms

f is a d-multilinear form if the variables are (i) ;e[q) je[n] and

every monomial has form 1 4 72, . . . T4,
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Our results — multilinear forms

f is a d-multilinear form if the variables are (z;;)ic[d),je[n] and
every monomial has form 1 ;22 4, . .. T4 i,-

e Example: when d = 2, f has form f(Z, ) = 27 Ay.
® The coeflicients of f corresponds to a d-dimensional tensor.

Theorem (Costello, 2013)

Suppose f is a bilinear form. Then
sup, P[f(&1,...,&,) = 2] < n~ 1) or f is close to rank-1.
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Our results — multilinear forms

f is a d-multilinear form if the variables are (i) ;e[q) je[n] and
every monomial has form 1 4 72, . . . T4,

e Example: when d = 2, f has form f(Z, ) = 27 Ay.

® The coefficients of f corresponds to a d-dimensional tensor.

Theorem (J., Kwan, Sauermann and Wang, 2024+)
Suppose [ is a d-multilinear form. Then
sup, P[f(&1,...,&n) = 2] < n=1T°M) or f is close to rank-1.

e Confirms the corrected conjecture for d-multilinear forms.

Zhihan Jin, X% (ETH Ziirich) Polynomial Littlewood—Offord BB/ “FEFFIRT 10/17



Global-local rank of the coefficient matrix

Setting: f(7) = 27 AZ, where A € R™ ™ is symmetric.

Question
How to show f is close to rank-r or close to reducible?
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Theorem (J., Kwan, Sauermann and Wang, 2024+)

If (1 — «) fraction of the r-by-r submatrices of A are singular,
= 3B symmetric s.t. rank(B) < r and |A — B|o = O(r*a'/"n?).
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Global-local rank of the coefficient matrix

Setting: f(7) = 27 AZ, where A € R™ ™ is symmetric.

Question

How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)

If (1 — «) fraction of the r-by-r submatrices of A are singular,
= 3B symmetric s.t. rank(B) < r and |A — B|o = O(r*a'/"n?).

® Easy if we don’t need B to be symmetric.
® 1/r is the optimal constant.
® A property testing problem for the rank.

e Sufficient to understand the rank of small submatrices.

Zhihan Jin, £Z#% (ETH Ziirich) Polynomial Littlewood-Offord BB/ “FEFFIRT 11 /17



One important trick — decoupling

Setting: f(#) = 27 AZ, where A € R™" is symmetric.
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Pf(€) = 2] = Bgy Py o [F (€11, E11)) = 2)E11)]
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One important trick — decoupling

Setting: f(#) = 27 AZ, where A € R™" is symmetric.
® Decoupling was introduced in Costello-Tao-Vu.

e Take a uniform independent sample ¢ and I C [n].

Pf(€) = 2] = Bgy Py o [F (€11, E11)) = 2)E11)]

L [FEL, €T = 21€ln)%)
) = f(El, €11 = 2]

= (BgnPer

= P[f(€[1], €]

m

Zhihan Jin, £Z#% (ETH Ziirich) Polynomial Littlewood-Offord BB/ “FEFFIRT

12/17



One important trick — decoupling

Setting: f(#) = 27 AZ, where A € R™" is symmetric.
® Decoupling was introduced in Costello-Tao-Vu.

e Take a uniform independent sample ¢ and I C [n].

PIf(£) = 2] = EngqIC] (1), €11) = 2|E11)]
o FELL €)= 21€l0) )
[(é[]ﬁ N = FEL, &) = 22

[z
* [l [IC])—f(é[I]f[ 1€]) is linear on [1].

<(E ant

1°]
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One important trick — decoupling

Setting: f(#) = 27 AZ, where A € R™" is symmetric.
® Decoupling was introduced in Costello-Tao-Vu.

e Take a uniform independent sample & and I C [n].
Pf(€) = 2] = BgPgiyq [F(EL1), €11°]) = 2|E]1]]
< (BgypPeypo [FEL, E11°)) = 21E101]%) 2
= (1), €l = (@1, €11 = 2] 2.
o F(ELL &) - f(é[ 1], €1[1°]) is limear on £[1).

— —

It is E[7]T AL I9(E[1] = E11°)) + (€] 1°), €11)).
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One important trick — decoupling

Setting: f(#) = 27 AZ, where A € R™" is symmetric.
® Decoupling was introduced in Costello-Tao-Vu.
e Take a uniform independent sample ¢ and I C [n].

Pf(€) = 2] = Bgy Py o [F (€11, E11)) = 2)E11)]
< (Eg P [FEL, €11 = 218112
111, €11) = £(€11), 81 = 2] 2.

[(é[]ﬁ[] fE,Ere)) =
FEL, 51 ) = FEL1), €117) is linear on &]1].

—

It is E[7]T AL I9(E[1] = E11°)) + (€] 1°), €11)).

e Costello used this to show P[f = 2] < n~1/2+0(1),

Zhihan Jin, €% (ETH Ziirich) Polynomial Littlewood—Offord
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One important trick — decoupling

Setting: f(Z) = Z7 AZ, where A € R™*" is symmetric.

PIf() = 2> < PIA(EL], E[1)) = £(EL1, €1[1°)) = 2],
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® Partition [n] = I U I°¢ randomly.
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One important trick — decoupling

Setting: f(7) = 2T AZ, where A € R™ ™ is symmetric.
P(f(§) = 2> < P[f(E[1,€[1°]) = f(ELD, €[1°]) = 2.
¢ Why does decoupling make sense?
® Partition [n] = I U I°¢ randomly.
A is close to rank-r <= A[I° 1] is close to rank-r.
(1),

° SuPzP[f(g):Z] ~ Sup, 51][ (5[ [ ]):Z|£[ ]]
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One important trick — decoupling

Setting: f(7) = 2T AZ, where A € R™ ™ is symmetric.
PIf(€) = 2° < BIF(ELL, 1) = £(EIN. 1)) = 2],
¢ Why does decoupling make sense?

® Partition [n] = I U I°¢ randomly.
A is close to rank-r <= A[I° 1] is close to rank-r.
11,

° Supzp[f(g)zz]wsupz g[][ (5[ [ ]):Z|£[ ]]
e What did we lose?
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One important trick — decoupling

Setting: f(7) = 71 AZ, where A € R"" is symmetric.
Plf(€) = 2] < P[f(][1), €[19)) = F(€]1),€[1°)) = 2].

¢ Why does decoupling make sense?

® Partition [n] = I U I°¢ randomly.
A is close to rank-r <= A[I° 1] is close to rank-r.
11,

° bupzp[f(g)zz]wsupz g[][ (5[ [ ]):Z|£[ ]]
e What did we lose?

- — -

* We only used f(€[1],£[1°]) — f(€[1],€[1¢)) = 0.
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One important trick — decoupling

Setting: f(7) = 71 AZ, where A € R"" is symmetric.
Plf(€) = 2] < P[f(][1), €[19)) = F(€]1),€[1°)) = 2].

¢ Why does decoupling make sense?

® Partition [n] = I U I°¢ randomly.
A is close to rank-r <= A[I° 1] is close to rank-r.
11,

° buPzP[f(g) :Z] ~ Sup, 51][ (5[ [ D :Z|£[ ]]
e What did we lose?
* We only used f([1],€[1°]) — f(€[1], g[ D =

—

¢ Kwan-Sauermann: remember f(£[I],£[1€]) = z and do
decoupling recursively.
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Setting: f(7) = 2T AZ, where A € R™ ™ is symmetric.
P(f(§) = 2> < P[f(E[1,€[1°]) = f(ELD, €[1°]) = 2.
¢ Why does decoupling make sense?
® Partition [n] = I U I°¢ randomly.
A is close to rank-r <= A[I° 1] is close to rank-r.
(1),

° SupZP[f(g)zz]Nsupz 51][ (5[ [ D:Z|£[ ]]
e What did we lose?
* We only used f([1],€[1°]) — f(€[1], g[ D =

—

¢ Kwan-Sauermann: remember f(£[I],£[1€]) = z and do
decoupling recursively.

® They used this to show sup, P[f(&1,...,&,) = 2] = O(n~1/?).
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Our new ideas on decoupling

Setting: f(7) = 27 AZ, where A € R™ ™ is symmetric.

PIf(§) = 2> < PIF(EL], €[1)) = f(EL1, €1 [1°) = 2)).
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Setting: f(7) = 71 AZ, where A € R"™" is symmetric.
Plf(€) = 2> < P[f(]1), €[19)) = f(E]1),€[1°)) = 2)).

® Take k more copies &1, ...,&;, and apply Jensen’s inequality.

—

P[f(€) = 2"+ < P[f(EN, €11) = F(EI), &[1°)) = 2,Vi].
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Our new ideas on decoupling

Setting: f(7) = 27 AZ, where A € R™ ™ is symmetric.

Pf(€) = 2* < PIf(E[1),€[1)) = f(€[1), €1)) = 2]

® Take k more copies &1, ...,&;, and apply Jensen’s inequality.
PIF(§) = 2" < P(ELN, €L = F(ELN. GlT) = 2,vd).

—

e Sufficient to study sz[ [TA[L I = ¢(2)].

Zhihan Jin, £Z#% (ETH Ziirich) Polynomial Littlewood-Offord BB/ “FEFFIRT 14 /17



Our new ideas on decoupling

Setting: f(7) = 27 AZ, where A € R™ ™ is symmetric.

P[f(§) = 2> < PIF(E[1,€[1]) = £(EL1), &[1]) = 2]).
® Take k more copies &1, ...,&;, and apply Jensen’s inequality.

P[f(€) = 2"+ < P[f(EN, €11) = F(EI), &[1°)) = 2,Vi].

* Sufficient to study Pz [E[NA[LLIC)E = ¢(5)].

e =c {-1,1}" %[ with i.i.d. Rademacher entries.
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Our new ideas on decoupling

Setting: f(Z) = Z7 AZ, where A € R™*" is symmetric.
PI/(€) = 2] < PUET.&17) = FE[1.€117) = 2)).
® Take k more copies &1, ...,&;, and apply Jensen’s inequality.
P[f(€) = 2" < P[f(E[1), €11°]) = F(E[1, &l1]) = =, ¥i].
* Sufficient to study Pz [g[I]A[I, I°)E = ¢(2)].
e = ¢ {—1,1}/"*[¥ with ii.d. Rademacher entries.

—

® Linear in £[I]. Apply inverse theorem for linear forms!
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Setting: f(Z) = Z7 AZ, where A € R™*" is symmetric.
PI/(€) = 2] < PUET.&17) = FE[1.€117) = 2)).
® Take k more copies &1, ...,&;, and apply Jensen’s inequality.
P[f(€) = 2" < P[f(E[1), €11°]) = F(E[1, &l1]) = =, ¥i].
* Sufficient to study Pz [g[I]A[I, I°)E = ¢(2)].
e = ¢ {—1,1}/"*[¥ with ii.d. Rademacher entries.

—

® Linear in £[I]. Apply inverse theorem for linear forms!

Suppose B € R™*" has ¢ disjoint m X m nonsingular submatrices

and = € {—1,1}"** contains i.i.d. Rademacher entries.
P[rows of BE lie in a GAP of rank r and volume at most V] < ?
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One question about random vectors in GAPs

Question

Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
P[rows of BE lie in a GAP of rank r and volume at most V] < ?
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Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
P[rows of BE lie in a GAP of rank r and volume at most V] < ?

e We showed it is at most V™mto(l)p—k(m=r)/2,

Zhihan Jin, £Z#% (ETH Ziirich) Polynomial Littlewood-Offord BB “FEFFBE 15 /17



One question about random vectors in GAPs

Question

Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
Plrows of BE lie in a GAP of rank r and volume at most V] <7

e We showed it is at most V™mto(l)p—k(m=r)/2,

® Implies P[f = 0] < n~ 1" or f is close to rank O(a~2).
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One question about random vectors in GAPs

Question

Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
Plrows of BE lie in a GAP of rank r and volume at most V] <7

e We showed it is at most V™mto(l)p—k(m=r)/2,

® Implies P[f = 0] < n~ 1" or f is close to rank O(a~2).

It is at most Vm—k+o(1)p—k(m—r)/2
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One question about random vectors in GAPs

Question

Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
Plrows of BE lie in a GAP of rank r and volume at most V] <7

e We showed it is at most V™mto(l)p—k(m=r)/2,

® Implies P[f = 0] < n~ 1" or f is close to rank O(a~2).

It is at most Vm—k+o(1)p—k(m—r)/2

o If true, P

czlé ENA[LT)E = p(2)] < n ko
or A[I

, I¢] is close to rank 2k — 1.
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One question about random vectors in GAPs

Question

Suppose B € R™*"™ has ¢ disjoint m X m nonsingular submatrices
and Z € {—1,1}"** contains i.i.d. Rademacher entries.
Plrows of BE lie in a GAP of rank r and volume at most V] <7

e We showed it is at most V™mto(l)p—k(m=r)/2,

® Implies P[f = 0] < n~ 1" or f is close to rank O(a~2).

It is at most Vm—k+o(1)p—k(m—r)/2

* If true, Py_[¢ [NA[I T9E = p(B)] < n o)
or A[I,I¢] is close to rank 2k — 1.

® Implies P[f = 0] > n~ 17 or f is close to rank O(a™!).
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