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Concentration and anticoncentration

Question
Let ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables.
What is the probability that

∑
i ξi > t?

• Chernoff bound: P [
∑

i ξi > t] ≤ e−t2/2n .
• Good when t ≫

√
n.

• What can we say when t = O(
√

n)?
• P[

∑
i ξi = t] = O(n−1/2).

• Gaussian approximation: N (0,n).
• Can we say something about P [

∑
i aiξi = t] in general?
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Concentration and anticoncentration

Theorem (Erdős–Littlewood–Offord, 1945)
Let a1, . . . , an ∈ R \ {0}. Let ξ1, . . . , ξn ∈ {−1, 1} be i.i.d.
Rademacher r.v.’s. Then,
supt P [

∑
i aiξi = t] ≤

( n
⌊n/2⌋

)/
2n = O(n−1/2).

Question
Let A ∈ {−1, 1}n×n be a matrix of i.i.d. Rademacher entries.
What is the probability that A is singular?

• det(A) =
∑

i(−1)n+i det(An,i) · an,i .
• whp “many” det(An,i) ̸= 0 ⇒ P[det(A) = 0] = o(1) by LO.
• State-of-the-art: P[det(A) = 0] = 2−n+o(n) by Tikhomirov.
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Anticoncentration of linear forms

Recall: a1, . . . , an ∈ R \ {0};
ξ1, . . . , ξn ∈ {−1, 1} are i.i.d. Rademacher r.v.’s.

Theorem (Erdős–Littlewood–Offord, 1945)
supt P[

∑
i aiξi = t] = O(n−1/2).

Theorem (Sárközy and Szemerédi, 1965)
If a1, . . . , an are distinct, then supt P[

∑
i aiξi = t] = O(n−3/2).

• The worst case: ai = i.
• Gaussian approximation: N (0,

∑
i i2) ≈ N (0,n3).

• More generally, if supt P[
∑

i aiξi = t] > n−C , then almost all
of a1, . . . , an have a strong additive structure.

• The inverse theorem. —Tao-Vu and Nguyen-Vu.
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Littlewood-Offord problems for polynomials

Question
What about supz P[f (ξ1, . . . , ξn)=z] if f is a degree-d polynomial?

A combinatorial approach:

Theorem (Kwan and Sauermann 2023+)
If f is a quadratic polynomial with Ω(n2) monomials,
⇒ supz P[f (ξ1, . . . , ξn) = z] ≤ O(n−1/2).

An approach via Gaussian approximation:

Theorem (Kane, Meka-Nguyen-Vu, 2016)
If f is a degree-d polynomial with Ω(nd) monomials,
⇒ supz P[f (ξ1, . . . , ξn) = z] ≤ (log n)Od(1)

/√
n.
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Littlewood-Offord problems for polynomials

Question
Under what condition of f , can we guarantee a better bound?

Definition
Suppose f is a degree-d polynomial.

• rank(f ) := min r s.t. f = g1h1 + · · ·+ grhr of lower degree.
• f is close to rank-r if f can be made rank at most r by

changing o(nd) monomials.

Conjecture (Costello 2013)
Suppose f has degree d. Then

• either supz P[f (ξ1, . . . , ξn) = z] ≤ n−d/2+o(1);
• or f is close to rank-1 (close to being reducible).
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Littlewood-Offord problems for polynomials

Conjecture (Costello 2013, corrected)
Suppose f has degree d. Then
• either supz P[f (ξ1, . . . , ξn) = z] ≤ n−1+o(1);
• or f is close to rank-1.

Connection to number theory:

Theorem (Browning and Gorodnik, 2017)
If q ∈ Z[x1, . . . , xm ] is irreducible, deg(q) = 2, rank(q) ≥ 2, then the
number of roots in {−B,−B + 1, . . . ,B}m is O(Bm−2+o(1)).

• Consider f = q(X1, . . . ,Xm), where Xi = ξi,1 + · · ·+ ξi,n/m .
• |Xi | = O(

√
n log n) whp. ⇒ B =

√
n log n.

• The “corrected” conjecture is more general!
• A very hard open problem to understand deg(q) ≥ 3!
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Our results – quadratic polynomials

Theorem (J., Kwan, Sauermann and Wang, 2024+)
Suppose f is a quadratic polynomial.

(1) P[f (ξ1, . . . , ξn) = 0] ≤ n−1+α or f is “close to rank-4α−2”.
(2) P[f (ξ1, . . . , ξn) = 0] ≤ n−0.51 or f is “close to rank-1” in C.

• Quadratic Littlewood-Offord can be used to study random
symmetric ±1-matrices.

• Kwan-Sauermann showed (1) in terms of L1-norm with a
better dependency.

• (2) is a stability result of Costello’s conjecture over C.
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Our results – multilinear forms

Definition
f is a d-multilinear form if the variables are (xi,j)i∈[d],j∈[n] and
every monomial has form x1,i1x2,i2 . . . xd,id .

• Example: when d = 2, f has form f (x⃗, y⃗) = x⃗T Ay⃗.
• The coefficients of f corresponds to a d-dimensional tensor.

Theorem (J., Kwan, Sauermann and Wang, 2024+)
Suppose f is a d-multilinear form. Then
supz P[f (ξ1, . . . , ξn) = z] ≤ n−1+o(1) or f is close to rank-1.

• Confirms the corrected conjecture for d-multilinear forms.
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Global-local rank of the coefficient matrix

Setting: f (x⃗) = x⃗T Ax⃗, where A ∈ Rn×n is symmetric.

Question
How to show f is close to rank-r or close to reducible?

Theorem (J., Kwan, Sauermann and Wang, 2024+)
If (1− α) fraction of the r-by-r submatrices of A are singular,
⇒ ∃B symmetric s.t. rank(B) < r and ∥A − B∥0 = O(r4α1/rn2).

• Easy if we don’t need B to be symmetric.
• 1/r is the optimal constant.
• A property testing problem for the rank.
• Sufficient to understand the rank of small submatrices.
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⇒ ∃B symmetric s.t. rank(B) < r and ∥A − B∥0 = O(r4α1/rn2).

• Easy if we don’t need B to be symmetric.

• 1/r is the optimal constant.
• A property testing problem for the rank.
• Sufficient to understand the rank of small submatrices.
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One important trick – decoupling

Setting: f (x⃗) = x⃗T Ax⃗, where A ∈ Rn×n is symmetric.

• Decoupling was introduced in Costello-Tao-Vu.
• Take a uniform independent sample ξ′ and I ⊆ [n].

P[f (ξ⃗) = z] = E
ξ⃗[I ]Pξ⃗[I c][f (ξ⃗[I ], ξ⃗[I

c]) = z|ξ⃗[I ]]

≤
(
E
ξ⃗[I ]Pξ⃗[I c]

[
f (ξ⃗[I ], ξ⃗[I c]) = z|ξ⃗[I ]

]2)1/2
= P

[
f (ξ⃗[I ], ξ⃗[I c]) = f (ξ⃗[I ], ξ⃗′[I c]) = z

]1/2
.

• f (ξ⃗[I ], ξ⃗[I c])− f (ξ⃗[I ], ξ⃗′[I c]) is linear on ξ⃗[I ].
It is ξ⃗[I ]T A[I , I c](ξ⃗[I c]− ξ⃗′[I c]) + φ(ξ⃗[I c], ξ⃗′[I c]).

• Costello used this to show P[f = z] ≤ n−1/2+o(1).
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One important trick – decoupling

Setting: f (x⃗) = x⃗T Ax⃗, where A ∈ Rn×n is symmetric.

P[f (ξ⃗) = z]2 ≤ P[f (ξ⃗[I ], ξ⃗[I c]) = f (ξ⃗[I ], ξ⃗′[I c]) = z].

• Why does decoupling make sense?
• Partition [n] = I ∪ I c randomly.

A is close to rank-r ⇐⇒ A[I c, I c] is close to rank-r .
• supz P

[
f (ξ⃗) = z

]
∼ supz Pξ⃗[Ic]

[
f (ξ⃗[I ], ξ⃗[I c]) = z|ξ⃗[I ]

]
.

• What did we lose?
• We only used f (ξ⃗[I ], ξ⃗[I c])− f (ξ⃗[I ], ξ⃗′[I c]) = 0.

• Kwan-Sauermann: remember f (ξ⃗[I ], ξ⃗[I c]) = z and do
decoupling recursively.

• They used this to show supz P[f (ξ1, . . . , ξn) = z] = O(n−1/2).
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Our new ideas on decoupling

Setting: f (x⃗) = x⃗T Ax⃗, where A ∈ Rn×n is symmetric.

P[f (ξ⃗) = z]2 ≤ P[f (ξ⃗[I ], ξ⃗[I c]) = f (ξ⃗[I ], ξ⃗′[I c]) = z]).

• Take k more copies ξ1, . . . , ξk , and apply Jensen’s inequality.

P[f (ξ⃗) = z]k+1 ≤ P
[
f (ξ⃗[I ], ξ⃗[I c]) = f (ξ⃗[I ], ξ⃗i [I c]) = z, ∀i

]
.

• Sufficient to study P
ξ⃗,Ξ

[
ξ⃗[I ]A[I , I c]Ξ = φ(Ξ)

]
.

• Ξ ∈ {−1, 1}Ic×[k] with i.i.d. Rademacher entries.
• Linear in ξ⃗[I ]. Apply inverse theorem for linear forms!

Question
Suppose B ∈ Rm×n has ℓ disjoint m × m nonsingular submatrices
and Ξ ∈ {−1, 1}n×k contains i.i.d. Rademacher entries.
P[rows of BΞ lie in a GAP of rank r and volume at most V ] ≤ ?
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One question about random vectors in GAPs

Question
Suppose B ∈ Rm×n has ℓ disjoint m × m nonsingular submatrices
and Ξ ∈ {−1, 1}n×k contains i.i.d. Rademacher entries.
P[rows of BΞ lie in a GAP of rank r and volume at most V ] ≤ ?

• We showed it is at most V m+o(1)ℓ−k(m−r)/2.
• Implies P[f = 0] ≤ n−1+α or f is close to rank O(α−2).

Conjecture
It is at most V m−k+o(1)ℓ−k(m−r)/2.

• If true, P
ξ⃗,Ξ

[
ξ⃗[I ]A[I , I c]Ξ = φ(Ξ)

]
≤ n−k+o(1)

or A[I , I c] is close to rank 2k − 1.
• Implies P[f = 0] > n−1+α or f is close to rank O(α−1).
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Further directions

Many open problems:
• Prove the conjecture last page.

• Prove the corrected Costello’s conjecture.
• Prove that if f is a d-multilinear form, then

supz P[f (ξ1, . . . , ξn) = z] > n−1+o(1) unless f is “close to” g · h
where g is a linear form.

• Equivalently, the coefficient tensor of f is close to slice-rank-1.
• We showed that f is close to partition-rank-1.

• A complete inverse theorem for P[⃗xT Ay⃗].
• A complete inverse theorem for quadratic polynomials.
• · · ·
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The End
Questions? Comments?
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