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Definition of permanent _

o Given a matrix A = (a;;) € C™", the permanent is given
by
Per(A) 2 Z A1,0(1) " On,o(n)-

(TESn
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Definition of permanent

o Given a matrix A = (a;;) € C™", the permanent is given

by
A
Per(A) = E A1,0(1) """ Anyo(n)-
oES,
IR = 1
>/ Per(A)
2 < N = (1,1022033 + 01,102,303 2
\\:;,\/: + 1,202,103 3 =+ a1,202,303,1
+ ay3az1a32 + a1,302.2031-
3 = 3
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e Computing permanent exactly is #P-hard. (Valiant 79’)
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Worst-case results

e Computing permanent exactly is #P-hard. (Valiant 79’)

@ There is a FPRAS to approximate (e-approximation)
permanent with non-negative entries. (Jerrum, Sinclair and

Vigoda 017)
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Worst-case results

e Computing permanent exactly is #P-hard. (Valiant 79’)

@ There is a FPRAS to approximate (e-approximation)
permanent with non-negative entries. (Jerrum, Sinclair and
Vigoda 017)

@ Deciding the sign of the permanent is also #P-hard.
(Aaronson 117)

@ Seemingly impossible to derive a multiplicative
approximation.
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Average-case computational complexity

o Exact computing the permanent is #P-hard even for a
constant portion of matrices with iid standard complex
Gaussian entries. (Aaronson and Arkhipov 10”)
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Average-case computational complexity

o Exact computing the permanent is #P-hard even for a
constant portion of matrices with iid standard complex
Gaussian entries. (Aaronson and Arkhipov 10”)

e What about average-case approximations?

@ Permanent-of-Gaussians Conjecture: approximating the
permanent of Gaussian matrices is #P-hard. (Aaronson
and Arkhipov 10’)

e Easy for quantum computers but maybe hard for classical
ones.
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Average-case approximation

o Relaxation: entries are iid sampled from a complex
Gaussian with mean p and unit variance.
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Average-case approximation

o Relaxation: entries are iid sampled from a complex
Gaussian with mean p and unit variance.

@ [ — oo is easy while p = 0 meets the
Permanent-of-Gaussians Conjecture.
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Average-case approximation

o Relaxation: entries are iid sampled from a complex
Gaussian with mean p and unit variance.

@ [ — oo is easy while p = 0 meets the
Permanent-of-Gaussians Conjecture.

e To (dis-)prove the Permanent-of-Gaussians Conjecture, it is
equivalent to consider p = n~¢ for some small constant
¢ > 0. (Eldar and Mehraban 18’)
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Average-case approximation

@ There is a quasi-polynomial scheme to approximate
random permanents when p = 1/polyloglog n. (Eldar and
Mehraban 18’)
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Average-case approximation

@ There is a quasi-polynomial scheme to approximate
random permanents when p = 1/polyloglog n. (Eldar and
Mehraban 18’)

e Can we improve the guarantee for u?
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Average-case approximation

@ There is a quasi-polynomial scheme to approximate
random permanents when p = 1/polyloglog n. (Eldar and
Mehraban 18’)

e Can we improve the guarantee for u?

@ Our result: there is a quasi-polynomial scheme to
approximate random permanents when p = 1/poly log n.
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e mean p and variance 1 <> mean 1 and variance p 2.



Setting

e mean 4 and variance 1 <> mean 1 and variance p~2.

o WLOG, consider matrix M = J+ zA where J the all-ones
matrix and each entry of A is iid sampled from D:

Eyplz] = 0, Vargup[2] =1, Egup |z — pf* = p < 0.
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Setting

e mean 4 and variance 1 <> mean 1 and variance p~2.

o WLOG, consider matrix M = J+ zA where J the all-ones
matrix and each entry of A is iid sampled from D:

Eyplz] = 0, Vargup[2] =1, Egup |z — pf* = p < 0.

e z=1/p = polylog n.
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Setting

mean pu and variance 1 <> mean 1 and variance p 2.

o WLOG, consider matrix M = J+ zA where J the all-ones
matrix and each entry of A is iid sampled from D:

Eyplz] = 0, Vargup[2] =1, Egup |z — pf* = p < 0.

z=1/u = polylog n.
p is a constant when

o p-biased standard (complex) Gaussian: unit variance and
mean (;
o biased Bernoulli: —1 + y w.p. 1/2 while 1 + p w.p. 1/2.
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o Cn,k = {{ila' t 77:16} g [n]}7
o Ppp 2 {0, .ju) € [n)": ju # js for a # B}. Ppyp= Sn.
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Expansion of permanent

o Cpyp= {{ir, - ,ix} C[n]};
o P2 {(j1, k) € [0)*: ju # jg for a# B}. Ppp = Sy

Per(J+ zA) 1 Z H (1+ za00)

O’EPn nt=1
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Expansion of permanent

o n,ké{{ih”' 7ik}g [’fl},
° Pn,ké{(jlv'” ajk)e[n]k ]oc 7'&]5 fOI'Oz%B} Pnn:Sn‘
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o Use Y}, ax?* to approximate L Per(J+ 24). Here t =1In 2
and the running time is simply O(n??).
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Basic idea

o Use thc:() ar?” to approximate % Per(J+ zA). Here t =1In 2
and the running time is simply O(n??).

e It is sufficient to prove that w.p. 1 — o(1),

n t
Z ap?| < n e, Zakzk >n 7.
k=t+1 k=0
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A second moment bound

— 1 ko
@ k= Tk Z{jlv'“vjk}ecn,k Z(il,“' k) € Pk ITi=1 @i
e Each a; is a sum of degree-k multilinear monomials whose
means are 0.
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A second moment bound

1 k .
] ag = nk 2{317 vjk}ecn,k E(ilv“' 77:k)€Pn,k Ht:l alt’-]t'
e Each a; is a sum of degree-k multilinear monomials whose
means are 0.

e Any two monomials in a; are uncorrelated.
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A second moment bound

@ ak = i Z{jla‘“yjk}eon,k E(il,“' 1K) € Pk HlZ:l Qi

e Each a; is a sum of degree-k multilinear monomials whose
means are 0.

e Any two monomials in a; are uncorrelated.

@ Any monomial in a; is uncorrelated with any monomial in
ag.
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A second moment bound

1 k .
Ok = 3E Z{jl»‘“ Jet€Cnk E(il,“' k)€ Pk ITi=1 @i
Each ay, is a sum of degree-k multilinear monomials whose
means are 0.

Any two monomials in a; are uncorrelated.

@ Any monomial in a; is uncorrelated with any monomial in

aj.

. 1
Elay@] = 1=t 5.
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A second moment bound

o Elaxay) = Tj—y- %, z=polylogn, t=log%.

n

S

k=t+1

n

no 2k N
=E| Y aqul?| = Z'Z]L':CL) w

kl=t+1 k=t+1

Var

@ Chebyshev’s inequality.
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° Cn,k = {{ila' e 7lk} - [’ﬂ]},
o P2 {(j1,-- k) € 0¥ jo # j for a # B}
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Approximation of a;’s

@ an {{7'17 : aik} - [n }a
o Pur 2 {(i,+ k) € [0 : jo # jp for o # B}

k
1
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Ut Gk} € Crgo i1 i€ [n] =1
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Approximation of a;’s

@ an {{Zlv : aik} C [n }a
o Pur 2 {(i,+ k) € [0 : jo # jp for o # B}

S Y o

{1, kY€ Cnp i1, ik} E Py g t=1

S Y I

Ut Gk} € Crgo i1 i€ [n] =1

Bl

ap =

1
~ok

:% 3 (Z am> (zzn; ai,jk> =: V.

{jl:"' 7jk}€Cn,k =1

ZZZO ap? — Z,Zzo Vit ‘ < n~ %! with high probability.
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o Let C} 4 ot tang 1o 1o the normalized sum of the

V7

jth column.
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o Let Cj £ W to be the normalized sum of the

jth column.

e (jis “more concentrated” than a;;’s.
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Approximation of a;’s

o Let C; £ W to be the normalized sum of the
jth column.

e (jis “more concentrated” than a;;’s.

o Rewrite V}, with respect to Cj’s:

n n n
1
Vi=—7 > ( az@jl) (Z am@) . (Z am)
{.717 7jk}€on,k =1 =1 =1

1
== Z Cj - Cj = .

{41, g €Cnk
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o nf2V, = DI dreCoy Cin -+ Gj's are the elementary
symmetric polynomials.
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o nf2V, = DI dreCoy Cin -+ Gj's are the elementary
symmetric polynomials.

o Let Dy, & n~H/2 > C’Jk
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Properties of V}’s

o nf2V, = Z{jhm GeHECu Cj, --- Cj’s are the elementary
symmetric polynomials.
A —k/2 N\ k
o Let Dy=n""23% 0, Cf.

e Newton’s identities:

_ Vi Vi = VoD S (1) Vio1-iDi

v,
k k
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Vi1 Vi— Vi_oD (1) Vs D;
o V= —1 V1 k22+%,=2( ) Vi—1—iDiy1

_k
nozy, C]’“

, Where

=
IS
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Vi1 Vi— Vi_a Do+ S F 1 (=1)1Vy_1_;D;
o V= Vs VizVio o+ k,_Q( ) Vi—1 i1 where
a k
Dk—n ZZjCj.

o Dy concentrates to E[Dy] = & =: E,p[7?].
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Approximation of V}’s

o V= Vi1 Vi— Vk72D2+2]:;:_21(—l)in—l—iDi+1
k
ch L n-2 Zj C’Jk
e D, concentrates to E[Dy] = & =: Eyup|2?].
o |Di| < n7 9% for all k> 3 with high probability.

, Where
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Approximation of V}’s

Vi1 Vi—Vi_o Do+ (1) iV_1_iD;
o Vi -1 V1 k22%z,2()k1 +1

e D, concentrates to E[Dy] = & =: Eyup|2?].

|Dy| < n O for all k> 3 with high probability.

, Where

e A good approximation of Vy:
1, k=0,
V/k = Vl7 k= )
V._ Vi—V_. €
s )
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Approximation of V}’s

Vi1 Vi—Vi_o Do+ (1) iV_1_iD;
o V) = Y=V k22%272( ) Vi—1 41 where
sk k
Dk—n 2chj.

e D, concentrates to E[Dy] = & =: Eyup|2?].
o |Di| < n7 9% for all k> 3 with high probability.
e A good approximation of Vy:

1, k=0,
Vlk: Vl, k: 3
V._ Vi—V_. €

° ZZ:Q Vit — ZZ:O V'kzk < 008 with high probability.
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Approximation of V}’s

o Represent V}’s with “probabilists’” Hermite polynomials”:

L,

k=0
1 &
Vi, = Vi(V1) = ¢ Vi, kzlzg@ﬂek(‘/l/\/g)-
V’k71V1k_V272€7 E>92 )
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Approximation of V}’s

o Represent V}’s with “probabilists’” Hermite polynomials”:

1 k=0
1 &
Vi= Vi) =4 Vi, k=1 = eb i, (V/VE).

v V=V,
k—1 lk k72€’ E>9

t ) 2
S e S V=T = (),
k=0 k=0

|2] < (Inn)%% — (%) is small only if | V1] is relatively large,
which is with probability o(1).
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o LPer(J+ 24) =31, .



o L Per(J+zA) =1 o wid.
° |an:t 1 ap?” ‘ < n~'e with high probability.
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Summary

o L Per(J+zA) =31 apd”.
° |ZZ:H_1 akz"“‘ < n~'e with high probability.
o

t

t t 00 2
Z akzk ] Z szk ~ Z %Zk ~ Z V;fzk = evlzf%
k=0 k=0 k=0

k=0

is large (> 1n=001) with high probability.
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Drawbacks and future question_

e From a; to Vi, we need Var[2*(aj, — V3)] to be small, which

does not hold for p~1 = z = no-000L,
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Drawbacks and future questions

o From aj, to Vi, we need Var[z*(az — V})] to be small, which

does not hold for p~1 = z = no-000L,

@ Is there a (quasi-)polynomial algorithm for = 1/poly(n)?
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Drawbacks and future questions

o From aj, to Vi, we need Var[z*(az — V})] to be small, which

does not hold for p~t = z = n0-0001,

@ Is there a (quasi-)polynomial algorithm for = 1/poly(n)?

@ Is there a method to directly derive (approximately) the
distribution of random permanents when p = 1/poly(n)?
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Drawbacks and future questions

o From aj, to Vi, we need Var[z*(az — V})] to be small, which

does not hold for p~t = z = n0-0001,

@ Is there a (quasi-)polynomial algorithm for = 1/poly(n)?

@ Is there a method to directly derive (approximately) the
distribution of random permanents when p = 1/poly(n)?

@ Does the distribution of random permanents concentrated
or rather anti-concentrated over C?
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Thank you.
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