Approximating Permanent of Random Matrices with Vanishing Mean: Made Better and Simpler

Zhengfeng Ji ${ }^{1}$ Zhihan Jin ${ }^{2}$ Pinyan Lu^{3}
${ }^{1}$ University of Technology Sydney
${ }^{2}$ ETH
${ }^{3}$ Shanghai University of Finance and Economics

$$
\text { January 11, } 2021
$$

Definition of permanent

- Given a matrix $A=\left(a_{i, j}\right) \in \mathbb{C}^{n \times n}$, the permanent is given by

$$
\operatorname{Per}(A) \triangleq \sum_{\sigma \in S_{n}} a_{1, \sigma(1)} \cdots a_{n, \sigma(n)} .
$$

Definition of permanent

- Given a matrix $A=\left(a_{i, j}\right) \in \mathbb{C}^{n \times n}$, the permanent is given by

$$
\operatorname{Per}(A) \triangleq \sum_{\sigma \in S_{n}} a_{1, \sigma(1)} \cdots a_{n, \sigma(n)} .
$$

$$
\begin{aligned}
& \quad \operatorname{Per}(A) \\
& =\quad a_{1,1} a_{2,2} a_{3,3}+a_{1,1} a_{2,3} a_{3,2} \\
& \quad+a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1} \\
& \\
& +a_{1,3} a_{2,1} a_{3,2}+a_{1,3} a_{2,2} a_{3,1} .
\end{aligned}
$$

Worst-case results

- Computing permanent exactly is \#P-hard. (Valiant 79')

Worst-case results

- Computing permanent exactly is \#P-hard. (Valiant 79')
- There is a FPRAS to approximate (ϵ-approximation) permanent with non-negative entries. (Jerrum, Sinclair and Vigoda 01')

Worst-case results

- Computing permanent exactly is \#P-hard. (Valiant 79')
- There is a FPRAS to approximate (ϵ-approximation) permanent with non-negative entries. (Jerrum, Sinclair and Vigoda 01')
- Deciding the sign of the permanent is also \#P-hard. (Aaronson 11')

Worst-case results

- Computing permanent exactly is \#P-hard. (Valiant 79')
- There is a FPRAS to approximate (ϵ-approximation) permanent with non-negative entries. (Jerrum, Sinclair and Vigoda 01')
- Deciding the sign of the permanent is also \#P-hard. (Aaronson 11')
- Seemingly impossible to derive a multiplicative approximation.

Average-case computational complexity

- Exact computing the permanent is \#P-hard even for a constant portion of matrices with iid standard complex Gaussian entries. (Aaronson and Arkhipov 10')

Average-case computational complexity

- Exact computing the permanent is \#P-hard even for a constant portion of matrices with iid standard complex Gaussian entries. (Aaronson and Arkhipov 10')
- What about average-case approximations?

Average-case computational complexity

- Exact computing the permanent is \#P-hard even for a constant portion of matrices with iid standard complex Gaussian entries. (Aaronson and Arkhipov 10')
- What about average-case approximations?
- Permanent-of-Gaussians Conjecture: approximating the permanent of Gaussian matrices is \#P-hard. (Aaronson and Arkhipov 10')

Average-case computational complexity

- Exact computing the permanent is \#P-hard even for a constant portion of matrices with iid standard complex Gaussian entries. (Aaronson and Arkhipov 10')
- What about average-case approximations?
- Permanent-of-Gaussians Conjecture: approximating the permanent of Gaussian matrices is \#P-hard. (Aaronson and Arkhipov 10')
- Easy for quantum computers but maybe hard for classical ones.

Average-case approximation

- Relaxation: entries are iid sampled from a complex Gaussian with mean μ and unit variance.

Average-case approximation

- Relaxation: entries are iid sampled from a complex Gaussian with mean μ and unit variance.
- $\mu \rightarrow \infty$ is easy while $\mu=0$ meets the Permanent-of-Gaussians Conjecture.

Average-case approximation

- Relaxation: entries are iid sampled from a complex Gaussian with mean μ and unit variance.
- $\mu \rightarrow \infty$ is easy while $\mu=0$ meets the Permanent-of-Gaussians Conjecture.
- To (dis-)prove the Permanent-of-Gaussians Conjecture, it is equivalent to consider $\mu=n^{-c}$ for some small constant $c>0$. (Eldar and Mehraban 18')

Average-case approximation

- There is a quasi-polynomial scheme to approximate random permanents when $\mu=1 /$ poly $\log \log n$. (Eldar and Mehraban 18')

Average-case approximation

- There is a quasi-polynomial scheme to approximate random permanents when $\mu=1 /$ poly $\log \log n$. (Eldar and Mehraban 18')
- Can we improve the guarantee for μ ?

Average-case approximation

- There is a quasi-polynomial scheme to approximate random permanents when $\mu=1 /$ poly $\log \log n$. (Eldar and Mehraban 18')
- Can we improve the guarantee for μ ?
- Our result: there is a quasi-polynomial scheme to approximate random permanents when $\mu=1 /$ poly $\log n$.

Setting

- mean μ and variance $1 \leftrightarrow$ mean 1 and variance μ^{-2}.

Setting

- mean μ and variance $1 \leftrightarrow$ mean 1 and variance μ^{-2}.
- WLOG, consider matrix $M=J+z A$ where J the all-ones matrix and each entry of A is iid sampled from \mathcal{D} :

$$
\mathbb{E}_{x \sim \mathcal{D}}[x]=0, \operatorname{Var}_{x \sim \mathcal{D}}[x]=1, \mathbb{E}_{x \sim \mathcal{D}}|x-\mu|^{3}=\rho<\infty
$$

- mean μ and variance $1 \leftrightarrow$ mean 1 and variance μ^{-2}.
- WLOG, consider matrix $M=J+z A$ where J the all-ones matrix and each entry of A is iid sampled from \mathcal{D} :

$$
\mathbb{E}_{x \sim \mathcal{D}}[x]=0, \operatorname{Var}_{x \sim \mathcal{D}}[x]=1, \mathbb{E}_{x \sim \mathcal{D}}|x-\mu|^{3}=\rho<\infty
$$

- $z=1 / \mu=$ poly $\log n$.
- mean μ and variance $1 \leftrightarrow$ mean 1 and variance μ^{-2}.
- WLOG, consider matrix $M=J+z A$ where J the all-ones matrix and each entry of A is iid sampled from \mathcal{D} :

$$
\mathbb{E}_{x \sim \mathcal{D}}[x]=0, \operatorname{Var}_{x \sim \mathcal{D}}[x]=1, \mathbb{E}_{x \sim \mathcal{D}}|x-\mu|^{3}=\rho<\infty
$$

- $z=1 / \mu=$ poly $\log n$.
- ρ is a constant when
- μ-biased standard (complex) Gaussian: unit variance and mean μ;
- biased Bernoulli: $-1+\mu$ w.p. $1 / 2$ while $1+\mu$ w.p. $1 / 2$.
- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\} ;$
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$. $P_{n, n}=S_{n}$.
- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\} ;$
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$. $P_{n, n}=S_{n}$.

$$
\begin{aligned}
\frac{\operatorname{Per}(J+z A)}{n!} & =\frac{1}{n!} \sum_{\sigma \in P_{n, n}} \prod_{t=1}^{n}\left(1+z a_{t, \sigma(t)}\right) \\
& =\frac{1}{n!} \sum_{\sigma \in P_{n, n}} \sum_{k=0}^{n} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in C_{n, k}} \prod_{t=1}^{k} z a_{i_{t}, \sigma\left(i_{t}\right)} \\
& =\frac{1}{n!} \sum_{k=0}^{n} z^{k} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in C_{n, k}} \sum_{\sigma \in P_{n, n}} \prod_{t=1}^{k} a_{i_{t}, \sigma\left(i_{t}\right)} \\
& =\frac{1}{n!} \sum_{k=0}^{n} z^{k} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in C_{n, k}}(n-k)!\prod_{t=1}^{k} a_{i_{t}, j_{t}}
\end{aligned}
$$

- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\} ;$
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$. $P_{n, n}=S_{n}$.

$$
\begin{aligned}
\frac{\operatorname{Per}(J+z A)}{n!} & =\frac{1}{n!} \sum_{k=0}^{n} z^{k} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in C_{n, k}} \sum_{\left(j_{1}, \cdots, j_{k}\right) \in P_{n, k}}(n-k)!\prod_{t=1}^{k} a_{i_{t}, j_{t}} \\
& =\sum_{k=0}^{n} z^{k}\left(\frac{1}{n^{\underline{k}}} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in C_{n, k}} \sum_{\left(j_{1}, \cdots, j_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}\right) \\
& =\sum_{k=0}^{n}\left(\frac{1}{n^{\underline{k}}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left(i_{1}, \cdots, i_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}\right) z^{k} \\
& =: \sum_{k=0}^{n} a_{k} z^{k} .
\end{aligned}
$$

Basic idea

- Use $\sum_{k=0}^{t} a_{k} z^{k}$ to approximate $\frac{1}{n!} \operatorname{Per}(J+z A)$. Here $t=\ln \frac{n}{\epsilon}$ and the running time is simply $\mathcal{O}\left(n^{2 t}\right)$.
- Use $\sum_{k=0}^{t} a_{k} z^{k}$ to approximate $\frac{1}{n!} \operatorname{Per}(J+z A)$. Here $t=\ln \frac{n}{\epsilon}$ and the running time is simply $\mathcal{O}\left(n^{2 t}\right)$.
- It is sufficient to prove that w.p. $1-o(1)$,

$$
\left|\sum_{k=t+1}^{n} a_{k} z^{k}\right|<n^{-\gamma} \epsilon, \quad\left|\sum_{k=0}^{t} a_{k} z^{k}\right|>n^{-\gamma}
$$

A second moment bound

- $a_{k}=\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left(i_{1}, \cdots, i_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}$.
- Each a_{k} is a sum of degree- k multilinear monomials whose means are 0 .

A second moment bound

- $a_{k}=\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left(i_{1}, \cdots, i_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}$.
- Each a_{k} is a sum of degree- k multilinear monomials whose means are 0.
- Any two monomials in a_{k} are uncorrelated.
- $a_{k}=\frac{1}{n^{\underline{k}}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left(i_{1}, \cdots, i_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}$.
- Each a_{k} is a sum of degree- k multilinear monomials whose means are 0 .
- Any two monomials in a_{k} are uncorrelated.
- Any monomial in a_{k} is uncorrelated with any monomial in a_{l}.
- $a_{k}=\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left(i_{1}, \cdots, i_{k}\right) \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}}$.
- Each a_{k} is a sum of degree- k multilinear monomials whose means are 0 .
- Any two monomials in a_{k} are uncorrelated.
- Any monomial in a_{k} is uncorrelated with any monomial in a_{l}.
-

$$
\mathbb{E}\left[a_{k} \overline{a_{l}}\right]=\mathbb{1}_{k=l} \cdot \frac{1}{k!}
$$

A second moment bound

- $\mathbb{E}\left[a_{k} \overline{\bar{u}_{l}}\right]=\mathbb{1}_{k=l} \cdot \frac{1}{k!}, z=$ poly $\log n, t=\log \frac{n}{\epsilon}$.

$$
\operatorname{Var}\left[\sum_{k=t+1}^{n} a_{k} z^{k}\right]=\mathbb{E}\left[\sum_{k, l=t+1}^{n} a_{k} \overline{a_{l}} z^{k} \bar{z}^{l}\right]=\sum_{k=t+1}^{n} \frac{|z|^{2 k}}{k!}=\left(\frac{\epsilon}{n}\right)^{\omega(1)} .
$$

- Chebyshev's inequality.

Approximation of a_{k} 's

- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\}$;
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$.

Approximation of a_{k} 's

- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\}$;
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$.

$$
\begin{aligned}
a_{k} & =\frac{1}{n^{\underline{k}}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}} \\
& \approx \frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{i_{1}, \cdots, i_{k} \in[n]} \prod_{t=1}^{k} a_{i_{t}, j_{t}} \\
& =\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}}\left(\sum_{i=1}^{n} a_{i, j_{1}}\right) \cdots\left(\sum_{i=1}^{n} a_{i, j_{k}}\right)=: V_{k} .
\end{aligned}
$$

Approximation of a_{k} 's

- $C_{n, k} \triangleq\left\{\left\{i_{1}, \cdots, i_{k}\right\} \subseteq[n]\right\}$;
- $P_{n, k} \triangleq\left\{\left(j_{1}, \cdots, j_{k}\right) \in[n]^{k}: j_{\alpha} \neq j_{\beta}\right.$ for $\left.\alpha \neq \beta\right\}$.

$$
\begin{aligned}
a_{k} & =\frac{1}{n^{\underline{k}}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{\left\{i_{1}, \cdots, i_{k}\right\} \in P_{n, k}} \prod_{t=1}^{k} a_{i_{t}, j_{t}} \\
& \approx \frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} \sum_{i_{1}, \cdots, i_{k} \in[n]} \prod_{t=1}^{k} a_{i_{t}, j_{t}} \\
& =\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}}\left(\sum_{i=1}^{n} a_{i, j_{1}}\right) \cdots\left(\sum_{i=1}^{n} a_{i, j_{k}}\right)=: V_{k} .
\end{aligned}
$$

- $\left|\sum_{k=0}^{t} a_{k} z^{k}-\sum_{k=0}^{t} V_{k} z^{k}\right|<n^{-0.1}$ with high probability.

Approximation of a_{k} 's

- Let $C_{j} \triangleq \frac{a_{1, j}+a_{2, j}+\cdots+a_{n, j}}{\sqrt{n}}$ to be the normalized sum of the j th column.

Approximation of a_{k} 's

- Let $C_{j} \triangleq \frac{a_{1, j}+a_{2, j}+\cdots+a_{n, j}}{\sqrt{n}}$ to be the normalized sum of the j th column.
- C_{j} is "more concentrated" than $a_{i, j}$'s.

Approximation of a_{k} 's

- Let $C_{j} \triangleq \frac{a_{1, j}+a_{2, j}+\cdots+a_{n, j}}{\sqrt{n}}$ to be the normalized sum of the j th column.
- C_{j} is "more concentrated" than $a_{i, j}$'s.
- Rewrite V_{k} with respect to C_{j} 's:

$$
\begin{aligned}
V_{k} & =\frac{1}{n^{k}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}}\left(\sum_{i=1}^{n} a_{i, j_{1}}\right)\left(\sum_{i=1}^{n} a_{i, j_{2}}\right) \cdots\left(\sum_{i=1}^{n} a_{i, j_{k}}\right) \\
& =\frac{1}{n^{k / 2}} \sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} C_{j_{1}} \cdots C_{j_{k}} \approx a_{k} .
\end{aligned}
$$

Properties of V_{k} 's

- $n^{k / 2} V_{k}=\sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} C_{j_{1}} \cdots C_{j_{k}}$'s are the elementary symmetric polynomials.

Properties of V_{k} 's

- $n^{k / 2} V_{k}=\sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} C_{j_{1}} \cdots C_{j_{k}}$'s are the elementary symmetric polynomials.
- Let $D_{k} \triangleq n^{-k / 2} \sum_{j=1}^{n} C_{j}^{k}$.

Properties of V_{k} 's

- $n^{k / 2} V_{k}=\sum_{\left\{j_{1}, \cdots, j_{k}\right\} \in C_{n, k}} C_{j_{1}} \cdots C_{j_{k}}$'s are the elementary symmetric polynomials.
- Let $D_{k} \triangleq n^{-k / 2} \sum_{j=1}^{n} C_{j}^{k}$.
- Newton's identities:

$$
V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}
$$

Approximation of V_{k} 's

- $V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}$, where $D_{k} \triangleq n^{-\frac{k}{2}} \sum_{j} C_{j}^{k}$.

Approximation of V_{k}^{\prime} 's

- $V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}$, where $D_{k} \triangleq n^{-\frac{k}{2}} \sum_{j} C_{j}^{k}$.
- D_{2} concentrates to $\mathbb{E}\left[D_{2}\right]=\xi=: \mathbb{E}_{x \sim \mathcal{D}}\left[x^{2}\right]$.

Approximation of V_{k} 's

- $V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}$, where $D_{k} \triangleq n^{-\frac{k}{2}} \sum_{j} C_{j}^{k}$.
- D_{2} concentrates to $\mathbb{E}\left[D_{2}\right]=\xi=: \mathbb{E}_{x \sim \mathcal{D}}\left[x^{2}\right]$.
- $\left|D_{k}\right| \leq n^{-0.1 k}$ for all $k \geq 3$ with high probability.

Approximation of V_{k} 's

- $V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}$, where $D_{k} \triangleq n^{-\frac{k}{2}} \sum_{j} C_{j}^{k}$.
- D_{2} concentrates to $\mathbb{E}\left[D_{2}\right]=\xi=: \mathbb{E}_{x \sim \mathcal{D}}\left[x^{2}\right]$.
- $\left|D_{k}\right| \leq n^{-0.1 k}$ for all $k \geq 3$ with high probability.
- A good approximation of V_{k} :

$$
V_{k}^{\prime}= \begin{cases}1, & k=0, \\ V_{1}, & k=1, \\ \frac{V_{k-1}^{\prime} V_{1}-V_{k-2}^{\prime} \xi}{k}, & k \geq 2\end{cases}
$$

Approximation of V_{k} 's

- $V_{k}=\frac{V_{k-1} V_{1}-V_{k-2} D_{2}+\sum_{i=2}^{k-1}(-1)^{i} V_{k-1-i} D_{i+1}}{k}$, where $D_{k} \triangleq n^{-\frac{k}{2}} \sum_{j} C_{j}^{k}$.
- D_{2} concentrates to $\mathbb{E}\left[D_{2}\right]=\xi=: \mathbb{E}_{x \sim \mathcal{D}}\left[x^{2}\right]$.
- $\left|D_{k}\right| \leq n^{-0.1 k}$ for all $k \geq 3$ with high probability.
- A good approximation of V_{k} :

$$
V_{k}^{\prime}= \begin{cases}1, & k=0, \\ V_{1}, & k=1, \\ \frac{V_{k-1}^{\prime} V_{1}-V_{k-2}^{\prime} \xi}{k}, & k \geq 2 .\end{cases}
$$

- $\left|\sum_{k=0}^{t} V_{k} z^{k}-\sum_{k=0}^{t} V_{k}^{\prime} z^{k}\right|<n^{-0.08}$ with high probability.

Approximation of V_{k} 's

- Represent V_{k} 's with "probabilists' Hermite polynomials":

$$
V_{k}^{\prime}=V_{k}^{\prime}\left(V_{1}\right)= \begin{cases}1, & k=0 \\ V_{1}, & k=1=\frac{1}{k!} \xi^{\frac{k}{2}} H_{e_{k}}\left(V_{1} / \sqrt{\xi}\right) . \\ \frac{V_{k-1}^{\prime} V_{1}-V_{k-2}^{\prime} \xi}{k}, & k \geq 2\end{cases}
$$

Approximation of V_{k} 's

- Represent V_{k} 's with "probabilists' Hermite polynomials":

$$
V_{k}^{\prime}=V_{k}^{\prime}\left(V_{1}\right)= \begin{cases}1, & k=0 \\ V_{1}, & k=1=\frac{1}{k!} \xi^{\frac{k}{2}} H_{e_{k}}\left(V_{1} / \sqrt{\xi}\right) . \\ \frac{V_{k-1}^{\prime} V_{1}-V_{k-2}^{\prime} \xi}{k}, & k \geq 2\end{cases}
$$

$$
\sum_{k=0}^{t} V_{k}^{\prime} z^{k} \approx \sum_{k=0}^{\infty} V_{k}^{\prime} z^{k}=e^{V_{1} z-\frac{\xi z^{2}}{2}}=(*)
$$

$|z| \leq(\ln n)^{0.05} \rightarrow(*)$ is small only if $\left|V_{1}\right|$ is relatively large, which is with probability $o(1)$.

Summary

- $\frac{1}{n!} \operatorname{Per}(J+z A)=\sum_{k=0}^{n} a_{k} z^{k}$.

Summary

- $\frac{1}{n!} \operatorname{Per}(J+z A)=\sum_{k=0}^{n} a_{k} z^{k}$.
- $\left|\sum_{k=t+1}^{n} a_{k} z^{k}\right|<n^{-1} \epsilon$ with high probability.
- $\frac{1}{n!} \operatorname{Per}(J+z A)=\sum_{k=0}^{n} a_{k} z^{k}$.
- $\left|\sum_{k=t+1}^{n} a_{k} z^{k}\right|<n^{-1} \epsilon$ with high probability.

$$
\sum_{k=0}^{t} a_{k} z^{k} \approx \sum_{k=0}^{t} V_{k} z^{k} \approx \sum_{k=0}^{t} V_{k}^{\prime} z^{k} \approx \sum_{k=0}^{\infty} V_{k}^{\prime} z^{k}=e^{V_{1} z-\frac{\xi z^{2}}{2}}
$$

is large ($>\frac{1}{2} n^{-0.01}$) with high probability.

Drawbacks and future questions

- From a_{k} to V_{k}, we need $\operatorname{Var}\left[z^{k}\left(a_{k}-V_{k}\right)\right]$ to be small, which does not hold for $\mu^{-1}=z=n^{0.0001}$.

Drawbacks and future questions

- From a_{k} to V_{k}, we need $\operatorname{Var}\left[z^{k}\left(a_{k}-V_{k}\right)\right]$ to be small, which does not hold for $\mu^{-1}=z=n^{0.0001}$.
- Is there a (quasi-)polynomial algorithm for $\mu=1 / \operatorname{poly}(n)$?

Drawbacks and future questions

- From a_{k} to V_{k}, we need $\operatorname{Var}\left[z^{k}\left(a_{k}-V_{k}\right)\right]$ to be small, which does not hold for $\mu^{-1}=z=n^{0.0001}$.
- Is there a (quasi-)polynomial algorithm for $\mu=1 / \operatorname{poly}(n)$?
- Is there a method to directly derive (approximately) the distribution of random permanents when $\mu=1 / \operatorname{poly}(n)$?

Drawbacks and future questions

- From a_{k} to V_{k}, we need $\operatorname{Var}\left[z^{k}\left(a_{k}-V_{k}\right)\right]$ to be small, which does not hold for $\mu^{-1}=z=n^{0.0001}$.
- Is there a (quasi-)polynomial algorithm for $\mu=1 / \operatorname{poly}(n)$?
- Is there a method to directly derive (approximately) the distribution of random permanents when $\mu=1 / \operatorname{poly}(n)$?
- Does the distribution of random permanents concentrated or rather anti-concentrated over \mathbb{C} ?

Thank you.

