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Definition of permanent

Given a matrix A = (ai,j) ∈ Cn×n, the permanent is given
by

Per(A) ≜
∑
σ∈Sn

a1,σ(1) · · · an,σ(n).

1 1

22

3 3

Per(A)

= a1,1a2,2a3,3 + a1,1a2,3a3,2

+ a1,2a2,1a3,3 + a1,2a2,3a3,1

+ a1,3a2,1a3,2 + a1,3a2,2a3,1.
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Worst-case results

Computing permanent exactly is #P-hard. (Valiant 79’)

There is a FPRAS to approximate (ϵ-approximation)
permanent with non-negative entries. (Jerrum, Sinclair and
Vigoda 01’)
Deciding the sign of the permanent is also #P-hard.
(Aaronson 11’)
Seemingly impossible to derive a multiplicative
approximation.
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Average-case computational complexity

Exact computing the permanent is #P-hard even for a
constant portion of matrices with iid standard complex
Gaussian entries. (Aaronson and Arkhipov 10’)

What about average-case approximations?
Permanent-of-Gaussians Conjecture: approximating the
permanent of Gaussian matrices is #P-hard. (Aaronson
and Arkhipov 10’)
Easy for quantum computers but maybe hard for classical
ones.
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Average-case approximation

Relaxation: entries are iid sampled from a complex
Gaussian with mean µ and unit variance.

µ → ∞ is easy while µ = 0 meets the
Permanent-of-Gaussians Conjecture.
To (dis-)prove the Permanent-of-Gaussians Conjecture, it is
equivalent to consider µ = n−c for some small constant
c > 0. (Eldar and Mehraban 18’)
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Average-case approximation

There is a quasi-polynomial scheme to approximate
random permanents when µ = 1/poly log log n. (Eldar and
Mehraban 18’)

Can we improve the guarantee for µ?
Our result: there is a quasi-polynomial scheme to
approximate random permanents when µ = 1/poly log n.
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Setting

mean µ and variance 1 ↔ mean 1 and variance µ−2.

WLOG, consider matrix M = J + zA where J the all-ones
matrix and each entry of A is iid sampled from D:

Ex∼D[x] = 0, Varx∼D[x] = 1, Ex∼D |x − µ|3 = ρ < ∞.

z = 1/µ = poly log n.
ρ is a constant when

µ-biased standard (complex) Gaussian: unit variance and
mean µ;
biased Bernoulli: −1 + µ w.p. 1/2 while 1 + µ w.p. 1/2.
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Expansion of permanent

Cn,k ≜ {{i1, · · · , ik} ⊆ [n]};
Pn,k ≜ {(j1, · · · , jk) ∈ [n]k : jα ̸= jβ for α ̸= β}. Pn,n = Sn.

Per(J + zA)

n! =
1
n!

∑
σ∈Pn,n

n∏
t=1

(1 + zat,σ(t))

=
1
n!

∑
σ∈Pn,n

n∑
k=0

∑
{i1,··· ,ik}∈Cn,k

k∏
t=1

zait,σ(it)

=
1
n!

n∑
k=0

zk
∑

{i1,··· ,ik}∈Cn,k

∑
σ∈Pn,n

k∏
t=1

ait,σ(it)

=
1
n!

n∑
k=0

zk
∑

{i1,··· ,ik}∈Cn,k

∑
(j1,··· ,jk)∈Pn,k

(n − k)!
k∏

t=1
ait,jt
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n! =
1
n!
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k=0

zk
∑

{i1,··· ,ik}∈Cn,k

∑
(j1,··· ,jk)∈Pn,k

(n − k)!
k∏

t=1
ait,jt

=

n∑
k=0

zk

 1
nk

∑
{i1,··· ,ik}∈Cn,k

∑
(j1,··· ,jk)∈Pn,k

k∏
t=1

ait,jt


=

n∑
k=0

 1
nk

∑
{j1,··· ,jk}∈Cn,k

∑
(i1,··· ,ik)∈Pn,k

k∏
t=1

ait,jt

zk

= :

n∑
k=0

akzk.
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Basic idea

Use
∑t

k=0 akzk to approximate 1
n! Per(J+ zA). Here t = ln n

ϵ
and the running time is simply O(n2t).

It is sufficient to prove that w.p. 1 − o(1),∣∣∣∣∣
n∑

k=t+1
akzk

∣∣∣∣∣ < n−γϵ,

∣∣∣∣∣
t∑

k=0
akzk

∣∣∣∣∣ > n−γ .
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A second moment bound

ak = 1
nk
∑

{j1,··· ,jk}∈Cn,k

∑
(i1,··· ,ik)∈Pn,k

∏k
t=1 ait,jt .

Each ak is a sum of degree-k multilinear monomials whose
means are 0.

Any two monomials in ak are uncorrelated.
Any monomial in ak is uncorrelated with any monomial in
al.

E[akal] = 1k=l ·
1
k! .
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A second moment bound

E[akal] = 1k=l · 1
k! , z = poly log n, t = log n

ϵ .

Var

[ n∑
k=t+1

akzk

]
= E

 n∑
k,l=t+1

akalzkzl

 =

n∑
k=t+1

|z|2k

k! =
( ϵ

n

)ω(1)
.

Chebyshev’s inequality.
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Approximation of ak’s

Cn,k ≜ {{i1, · · · , ik} ⊆ [n]};
Pn,k ≜ {(j1, · · · , jk) ∈ [n]k : jα ̸= jβ for α ̸= β}.

ak =
1
nk

∑
{j1,··· ,jk}∈Cn,k

∑
{i1,··· ,ik}∈Pn,k

k∏
t=1

ait,jt

≈ 1
nk

∑
{j1,··· ,jk}∈Cn,k

∑
i1,··· ,ik∈[n]

k∏
t=1

ait,jt

=
1
nk

∑
{j1,··· ,jk}∈Cn,k

( n∑
i=1

ai,j1

)
· · ·

( n∑
i=1

ai,jk

)
=: Vk.

∣∣∣∑t
k=0 akzk −

∑t
k=0 Vkzk

∣∣∣ < n−0.1 with high probability.
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Approximation of ak’s

Let Cj ≜ a1,j+a2,j+···+an,j√
n to be the normalized sum of the

jth column.

Cj is “more concentrated” than ai,j’s.
Rewrite Vk with respect to Cj’s:

Vk =
1
nk

∑
{j1,··· ,jk}∈Cn,k

( n∑
i=1

ai,j1

)( n∑
i=1

ai,j2

)
· · ·

( n∑
i=1

ai,jk

)

=
1

nk/2

∑
{j1,··· ,jk}∈Cn,k

Cj1 · · ·Cjk ≈ ak.
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Properties of Vk’s

nk/2Vk =
∑

{j1,··· ,jk}∈Cn,k
Cj1 · · ·Cjk ’s are the elementary

symmetric polynomials.

Let Dk ≜ n−k/2∑n
j=1 C k

j .
Newton’s identities:

Vk =
Vk−1V1 − Vk−2D2 +

∑k−1
i=2 (−1)iVk−1−iDi+1

k .
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Approximation of Vk’s

Vk =
Vk−1V1−Vk−2D2+

∑k−1
i=2 (−1)iVk−1−iDi+1

k , where
Dk ≜ n− k

2
∑

j C k
j .

D2 concentrates to E[D2] = ξ =: Ex∼D[x2].
|Dk| ≤ n−0.1k for all k ≥ 3 with high probability.
A good approximation of Vk:

V′
k =


1, k = 0,
V1, k = 1,
V′

k−1V1−V′
k−2ξ

k , k ≥ 2.

∣∣∣∑t
k=0 Vkzk −

∑t
k=0 V′

kzk
∣∣∣ < n−0.08 with high probability.
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Approximation of Vk’s

Represent Vk’s with “probabilists’ Hermite polynomials”:

V′
k = V′

k(V1) =


1, k = 0
V1, k = 1
V′

k−1V1−V′
k−2ξ

k , k ≥ 2
=

1
k!ξ

k
2 Hek

(
V1/

√
ξ
)
.

t∑
k=0

V′
kzk ≈

∞∑
k=0

V′
kzk = eV1z− ξz2

2 = (∗).

|z| ≤ (lnn)0.05 → (∗) is small only if |V1| is relatively large,
which is with probability o(1).
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Summary

1
n! Per(J + zA) =

∑n
k=0 akzk.

∣∣∑n
k=t+1 akzk∣∣ < n−1ϵ with high probability.

t∑
k=0

akzk ≈
t∑

k=0
Vkzk ≈

t∑
k=0

V′
kzk ≈

∞∑
k=0

V′
kzk = eV1z− ξz2

2

is large (> 1
2n−0.01) with high probability.
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Drawbacks and future questions

From ak to Vk, we need Var[zk(ak − Vk)] to be small, which
does not hold for µ−1 = z = n0.0001.

Is there a (quasi-)polynomial algorithm for µ = 1/poly(n)?
Is there a method to directly derive (approximately) the
distribution of random permanents when µ = 1/poly(n)?
Does the distribution of random permanents concentrated
or rather anti-concentrated over C?
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Thank you.
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