Random Hasse diagrams & box-Delaunay graphs

Zhihan Jin

ETH Zürich

Joint work with Matthew Kwan and Lyuben Lichev

August 8, 2025

Posets

Definition

A poset is a pair (X, \preceq) where \preceq is a partial order on X^2 .

- Reflexivity: $a \leq a$ for all $a \in X$;
- Antisymmetry: $a \leq b$ and $b \leq a$ imply a = b;
- Transitivity: $a \leq b \leq c$ implies $a \leq c$.

Posets

Definition

A poset is a pair (X, \preceq) where \preceq is a partial order on X^2 .

- Reflexivity: $a \leq a$ for all $a \in X$;
- Antisymmetry: $a \leq b$ and $b \leq a$ imply a = b;
- Transitivity: $a \leq b \leq c$ implies $a \leq c$.

An example:

• Comparability graph: connect all comparable pairs.

• Form an important family of perfect graphs.

- Form an important family of perfect graphs.
 - Hereditary: closed under taking induced subgraphs.

- Form an important family of perfect graphs.
 - Hereditary: closed under taking induced subgraphs.
 - clique number = chromatic number: by Mirsky's theorem.

• Hasse diagram: keep the minimal possible comparable pairs.

- Hasse diagram: keep the minimal possible comparable pairs.
 - Connect comparable x, y if there is no $x \prec z \prec y$ or $y \prec z \prec x$.

- Hasse diagram: keep the minimal possible comparable pairs.
 - Connect comparable x, y if there is no $x \prec z \prec y$ or $y \prec z \prec x$.

- Hasse diagram: keep the minimal possible comparable pairs.
 - Connect comparable x, y if there is no $x \prec z \prec y$ or $y \prec z \prec x$.

- Hasse diagram: keep the minimal possible comparable pairs.
 - Connect comparable x, y if there is no $x \prec z \prec y$ or $y \prec z \prec x$.

• C_5 is not a perfect graph.

- Hasse diagram: keep the minimal possible comparable pairs.
 - Connect comparable x, y if there is no $x \prec z \prec y$ or $y \prec z \prec x$.

• C_5 is not a perfect graph.

Question

What can we say about the clique number and the chromatic number of Hasse diagrams?

• They are triangle-free:

• They are triangle-free: 🛕

• They are triangle-free: 🛆 or 🐴

• They are triangle-free: 🛆 or 🔨

• They are triangle-free: \triangle or \triangle \Longrightarrow clique number is 2.

Question

Is the chromatic number always O(1)?

• They are triangle-free: \triangle or \triangle \Longrightarrow clique number is 2.

Question

Is the chromatic number always O(1)?

Theorem (Bollobás 1977, Nešetřil and Rödl 1984)

No!

• They are triangle-free: \triangle or \triangle \Longrightarrow clique number is 2.

Question

Is the chromatic number always O(1)?

Theorem (Bollobás 1977, Nešetřil and Rödl 1984)

No!

Theorem (Brightwell and Nešetřil 1991)

There exists Hasse diagrams with independence number o(n).

• They are triangle-free: \triangle or \triangle \Longrightarrow clique number is 2.

Question

Is the chromatic number always O(1)?

Theorem (Bollobás 1977, Nešetřil and Rödl 1984)

No!

Theorem (Brightwell and Nešetřil 1991)

There exists Hasse diagrams with independence number o(n).

• $\chi(G) \ge n/\alpha(G) = \omega(1)$.

Question

How small can the independence number of a Hasse diagram be?

Question

How small can the independence number of a Hasse diagram be?

• Triangle-free $\Longrightarrow \alpha(G) = \Omega(\sqrt{n \log n})$.

Question

How small can the independence number of a Hasse diagram be?

• Triangle-free $\Longrightarrow \alpha(G) = \Omega(\sqrt{n \log n})$.

Theorem (Suk and Tomon 2021)

The independence number can be $O(n^{3/4})!$

Question

How small can the independence number of a Hasse diagram be?

• Triangle-free $\Longrightarrow \alpha(G) = \Omega(\sqrt{n \log n})$.

Theorem (Suk and Tomon 2021)

The independence number can be $O(n^{3/4})!$

• The only known example that gives n^{1-c} .

Question

How small can the independence number of a Hasse diagram be?

• Triangle-free $\Longrightarrow \alpha(G) = \Omega(\sqrt{n \log n})$.

Theorem (Suk and Tomon 2021)

The independence number can be $O(n^{3/4})!$

- The only known example that gives n^{1-c} .
- The chromatic number $\chi(G) \geq n/\alpha(G) = \Omega(n^{1/4})$.

Question

Question

- *d-dimensional posets*:
 - every x is mapped to $p_x \in [0,1]^d$ s.t. $x \prec y \Leftrightarrow p_x < p_y$.

Question

- *d-dimensional posets*:
 - every x is mapped to $p_x \in [0,1]^d$ s.t. $x \prec y \Leftrightarrow p_x < p_y$.

Question

What about Hasse diagrams (posets) that can be visualized?

- *d-dimensional posets*:
 - every x is mapped to $p_x \in [0,1]^d$ s.t. $x \prec y \Leftrightarrow p_x < p_y$.

• Every finite poset can be embedded in $[0,1]^d$ for some d.

Question

- *d-dimensional posets*:
 - every x is mapped to $p_x \in [0,1]^d$ s.t. $x \prec y \Leftrightarrow p_x < p_y$.

- Every finite poset can be embedded in $[0,1]^d$ for some d.
- Given a set P of n points in $[0,1]^d$, the d-dimensional Hasse diagram of P is the Hasse diagram corresponding to the (above) natural poset of P.

d-dimensional box-Delaunay graphs

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

d-dimensional box-Delaunay graphs

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

• The box-Delaunay graphs of P is the union of 2^d Hasse diagrams of P by flipping the d axes.

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

- The box-Delaunay graphs of P is the union of 2^d Hasse diagrams of P by flipping the d axes.
- The box-Delaunay graphs are more symmetric.

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

- The box-Delaunay graphs of P is the union of 2^d Hasse diagrams of P by flipping the d axes.
- The box-Delaunay graphs are more symmetric.
- *d*-dim Hasse diagrams (box-Delaunay graphs) are geometric graphs that are defined **non-locally**!

Definition

Let P be a set of n points in \mathbb{R}^d . The box-Delaunay graph of P: connect $p, q \in P$ if the axis-parallel box enclosing p, q contains no other point in P.

- The box-Delaunay graphs of P is the union of 2^d Hasse diagrams of P by flipping the d axes.
- The box-Delaunay graphs are more symmetric.
- *d*-dim Hasse diagrams (box-Delaunay graphs) are geometric graphs that are defined **non-locally**!
 - (x, y) and (x', y') are more likely to be connected if $|x x'| \cdot |y y'|$ is small.

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0,1]^d$?

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0,1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

Are there 2-dim Hasse diagrams (or box-Delaunay graphs) with $\alpha(G) = o(n)$?

• How to make $\alpha(G)$ small?

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

Are there 2-dim Hasse diagrams (or box-Delaunay graphs) with $\alpha(G) = o(n)$?

• How to make $\alpha(G)$ small? \Rightarrow Sample the points in $[0,1]^d$!

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

- How to make $\alpha(G)$ small? \Rightarrow Sample the points in $[0,1]^d$!
- Expect $\alpha(G) \approx n \frac{\log d(G)}{d(G)}$ because G is locally sparse.

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

- How to make $\alpha(G)$ small? \Rightarrow Sample the points in $[0,1]^d$!
- Expect $\alpha(G) \approx n \frac{\log d(G)}{d(G)}$ because G is locally sparse.
- $d(G) \approx (\log n)^{d-1}$ whp.

Hasse diagrams (or box-Delaunay graphs) of $P \subseteq [0, 1]^d$?

Theorem (Kříž and Nešetřil 1991)

There exists 2-dim Hasse diagrams (and box-Delaunay graph) with arbitrarily large chromatic number.

Question (Matoušek and Přívětivý 2006)

- How to make $\alpha(G)$ small? \Rightarrow Sample the points in $[0,1]^d$!
- Expect $\alpha(G) \approx n \frac{\log d(G)}{d(G)}$ because G is locally sparse.
- $d(G) \approx (\log n)^{d-1}$ whp.
- Expect $\alpha(G) \approx n \log \log n / (\log n)^{d-1}$ whp.

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Tomon 2024)

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Tomon 2024)

For fixed $d \geq 3$, there exists $P \subset [0,1]^d$ s.t. the box-Delaunay graph of P has independence number $O(n/(\log n)^{(d-1)/2+o(1)})$.

• Tomon considered random points with modification.

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Tomon 2024)

- Tomon considered random points with modification.
- Worse than what we expected: $n \log \log n / (\log n)^{d-1}$.

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Tomon 2024)

- Tomon considered random points with modification.
- Worse than what we expected: $n \log \log n / (\log n)^{d-1}$.
- The method does not work for Hasse diagrams.

Theorem (Chen, Pach, Szegedy and Tardos 2008)

Suppose $P \subseteq [0,1]^2$ is uniformly at random. Then, whp, the Hasse diagram (or the box-Delaunay graph) of P has independence number $O(n(\log \log n)^2/\log n)$.

Theorem (Tomon 2024)

- Tomon considered random points with modification.
- Worse than what we expected: $n \log \log n / (\log n)^{d-1}$.
- The method does not work for Hasse diagrams.

Question

What is the independence number of the Hasse diagram (or the box-Delaunay graph) for $P \subset [0,1]^d$ uniformly at random?

Question

What is the independence number of the Hasse diagram (or the box-Delaunay graph) for $P \subset [0,1]^d$ uniformly at random?

Theorem (J., Lichev and Kwan 2025+)

When d = 2, the answers for both graphs are $\Theta(n \log \log n / \log n)$.

Question

What is the independence number of the Hasse diagram (or the box-Delaunay graph) for $P \subset [0,1]^d$ uniformly at random?

Theorem (J., Lichev and Kwan 2025+)

When d = 2, the answers for both graphs are $\Theta(n \log \log n / \log n)$.

Theorem (J., Lichev and Kwan 2025+)

When $d \ge 3$, the answers for both graphs are $n/(\log n)^{d-1+o(1)}$.

Question

What is the independence number of the Hasse diagram (or the box-Delaunay graph) for $P \subset [0,1]^d$ uniformly at random?

Theorem (J., Lichev and Kwan 2025+)

When d=2, the answers for both graphs are $\Theta(n \log \log n / \log n)$.

Theorem (J., Lichev and Kwan 2025+)

When $d \ge 3$, the answers for both graphs are $n/(\log n)^{d-1+o(1)}$.

• Both results work for chromatic numbers.

• We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$

- We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$
- Which is closer to the truth?

- We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$
- Which is closer to the truth?
- What about the deterministic case for dimension d?

- We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$
- Which is closer to the truth?
- What about the deterministic case for dimension d?

Question

Fix $d \geq 2$.

Is it true that any Hasse diagram (or box-Delaunay graph) of a d-dimensional point set has independence number $n^{1-o_d(1)}$?

- We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$
- Which is closer to the truth?
- What about the deterministic case for dimension d?

Question

Fix $d \geq 2$.

Is it true that any Hasse diagram (or box-Delaunay graph) of a d-dimensional point set has independence number $n^{1-o_d(1)}$?

• Is it true when d=2?

- We showed the independence number satisfies $\alpha(G) = \Omega(n \log \log n/(\log n)^{d-1})$ and $\alpha(G) = O(n(\log \log n)^{2d-2}/(\log n)^{d-1}).$
- Which is closer to the truth?
- What about the deterministic case for dimension d?

Question

Fix $d \geq 2$.

Is it true that any Hasse diagram (or box-Delaunay graph) of a d-dimensional point set has independence number $n^{1-o_d(1)}$?

- Is it true when d=2?
 - $\alpha(G) = \Omega(n^{0.631})$ by Chan.

The End

Questions? Comments?