Exponential Erdős-Szekeres theorem for matrices

Zhihan Jin

ETH Zürich

Joint work with Recep Altar Çiçeksiz, Eero Räty and István Tomon

$$
\text { June 12, } 2023
$$

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$
\begin{array}{llllllllll}
3 & 2 & 1 & 6 & 5 & 4 & 9 & 8 & 7 & 10
\end{array}
$$

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$
\begin{array}{llllllllll}
3 & 2 & 1 & 6 & 5 & 4 & 9 & 8 & 7 & 10
\end{array}
$$

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$
\begin{array}{llllllllll}
3 & 2 & 1 & 6 & 5 & 4 & 9 & 8 & 7 & 10
\end{array}
$$

- $(n-1)^{2}+1$ is tight.

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$
\begin{array}{llllllllll}
3 & 2 & 1 & 6 & 5 & 4 & 9 & 8 & 7 & 10
\end{array}
$$

- $(n-1)^{2}+1$ is tight.
- Many beautiful proofs.

Erdős-Szekeres theorem

Theorem (Erdős-Szekeres '35)

Any sequence of $(n-1)^{2}+1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$
\begin{array}{llllllllll}
3 & 2 & 1 & 6 & 5 & 4 & 9 & 8 & 7 & 10
\end{array}
$$

- $(n-1)^{2}+1$ is tight.
- Many beautiful proofs.
- Different (natural) generalizations.

Multi-array Erdős-Szekeres theorem

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^{r}}+1$, there exist $n+1$ indices that induce a monotone subsequence in each of the arrays.

Multi-array Erdős-Szekeres theorem

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^{r}}+1$, there exist $n+1$ indices that induce a monotone subsequence in each of the arrays.

- Recursively apply Erdős-Szekeres theorem r times.

Multi-array Erdős-Szekeres theorem

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^{r}}+1$, there exist $n+1$ indices that induce a monotone subsequence in each of the arrays.

- Recursively apply Erdős-Szekeres theorem r times.
- $n^{2^{r}}+1$ tight.

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

7	8	9
4	5	6
1	2	3

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

7	8	9
4	5	6
1	2	3

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

7	8	9
4	5	6
1	2	3

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is monotone if

- all rows are monotone (in the same direction),
- all columns are monotone (in the same direction).

Erdős-Szkeres-type question for matrices

Question

Determine $M_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Erdős-Szkeres-type question for matrices

Question

Determine $M_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

$$
n^{n / 2} \leq M_{2}(n) \leq \operatorname{twr}_{5}(O(n)) .
$$

Erdős-Szkeres-type question for matrices

Question

Determine $M_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

$$
n^{n / 2} \leq M_{2}(n) \leq \operatorname{twr}_{5}(O(n)) .
$$

Theorem (Bucić-Sudakov-Tran '22)

$$
M_{2}(n) \leq 2^{2^{2(2+o(1)) n}}
$$

Erdős-Szkeres-type question for matrices

Question

Determine $M_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

$$
n^{n / 2} \leq M_{2}(n) \leq \operatorname{twr}_{5}(O(n)) .
$$

Theorem (Bucić-Sudakov-Tran '22)

$$
M_{2}(n) \leq 2^{2^{(2+o(1)) n}}
$$

- The lower bound is due to a probabilistic argument.

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell .
$$

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell .
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell .
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

$$
\begin{array}{lll}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}
$$

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell .
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

7	8	9	3	6	9	
4	5	6		2	5	8
1	2	3		1	4	7

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

7	8	9	3	6	9	6	8	9
4	5	6	2	5	8	2	5	7
1	2	3	1	4	7	1	3	4

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

Lexicographic matrices

- Matrix A is lex-increasing if

$$
A_{i, j} \leq A_{k, \ell} \Leftrightarrow i<k \text { or } i=k \text { and } j<\ell
$$

Definition

A matrix is lex-monotone if one can rotate and/or mirror it to get a lex-increasing matrix.

- There are 8 different "types" of lex-monotone matrices.

Lexicographic matrices

Question

Determine $L_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Lexicographic matrices

Question

Determine $L_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Theorem (Fishburn-Graham '93)

$$
L_{2}(n) \leq M_{2}\left(2 n^{2}-5 n+4\right)=\operatorname{twr}_{5}\left(O\left(n^{2}\right)\right)
$$

Lexicographic matrices

Question

Determine $L_{2}(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Theorem (Fishburn-Graham '93)

$L_{2}(n) \leq M_{2}\left(2 n^{2}-5 n+4\right)=\operatorname{twr}_{5}\left(O\left(n^{2}\right)\right)$.

Theorem (Bucić-Sudakov-Tran '22)

$$
L_{2}(n) \leq M_{2}\left(2 n^{2}-5 n+4\right)=2^{2^{O\left(n^{2}\right)}}
$$

Our results

Theorem (Çiçeksiz, J., Räty, Tomon '23)

An $O\left(n^{4}\right) \times 2^{O\left(n^{4}(\log n)^{2}\right)}$ real matrix contains a $n \times n$ monotone submatrix. In particular, $M_{2}(n)=2^{O\left(n^{4}(\log n)^{2}\right)}$.

Our results

Theorem (Çiçeksiz, J., Räty, Tomon '23)

An $O\left(n^{4}\right) \times 2^{O\left(n^{4}(\log n)^{2}\right)}$ real matrix contains a $n \times n$ monotone submatrix. In particular, $M_{2}(n)=2^{O\left(n^{4}(\log n)^{2}\right)}$.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

$$
L_{2}(n) \leq M_{2}\left(2 n^{2}-5 n+4\right) \leq 2^{O\left(n^{8}(\log n)^{2}\right)} .
$$

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Restricted to a $n^{2} \times N$ matrix with $N \approx 2^{2^{O(n)}}$.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Restricted to a $n^{2} \times N$ matrix with $N \approx 2^{2^{O(n)}}$.
- Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Restricted to a $n^{2} \times N$ matrix with $N \approx 2^{2^{O(n)}}$.
- Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.
- Apply pigeonhole principle on the index sets of the monotone sub-columns and the direction.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Restricted to a $n^{2} \times N$ matrix with $N \approx 2^{2^{O(n)}}$.
- Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.
- Apply pigeonhole principle on the index sets of the monotone sub-columns and the direction.
- Get a column-monotone matrix of size
$n \times N / 2\binom{n^{2}}{n} \approx n \times 2^{2^{O(n)}}$.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- Apply multi-array Erdős-Szekeres.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- Apply multi-array Erdős-Szekeres.
- Row-monotone submatrix of size $n \times n$.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- Apply multi-array Erdős-Szekeres.
- Row-monotone submatrix of size $n \times n$.
- This requires $n^{2^{n}}$ columns.

A pigeonhole argument

Goal: show that $M_{2}(n)=2^{2^{O(n)}}$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- Apply multi-array Erdős-Szekeres.
- Row-monotone submatrix of size $n \times n$.
- This requires $n^{2^{n}}$ columns.
- A $n \times n$ monotone submatrix!

Find row-monotone matrices

$$
\mathbb{R}^{n^{2} \times N} \ni A
$$

Find row-monotone matrices

$$
\mathbb{R}^{n^{2} \times N} \ni A \xlongequal[\text { column-monotone }]{\text { pay } \exp (n) \text { in columns }} B
$$

Find row-monotone matrices

$$
\mathbb{R}^{n^{2} \times N} \ni A \xlongequal[\text { column-monotone }]{\text { pay } \exp (n) \text { in columns }} \quad B \xlongequal[\text { row-monotone }]{\text { pay } 2^{2^{n}} \text { in columns }} C
$$

Find row-monotone matrices

$$
\mathbb{R}^{n^{2} \times N} \ni A \xlongequal[\text { column-monotone }]{\text { pay } \exp (n) \text { in columns }} \quad B \xlongequal[\text { row-monotone }]{\text { pay } 2^{2^{n}} \text { in columns }} C
$$

Question

Can we do better if we start with more rows (instead of n^{2})?

Find row-monotone matrices

$$
\mathbb{R}^{n^{2} \times N} \ni A \xlongequal[\text { column-monotone }]{\text { pay } \exp (n) \text { in columns }} \quad B \xlongequal[\text { row-monotone }]{\text { pay } 2^{2^{n}} \text { in columns }} C
$$

Question

Can we do better if we start with more rows (instead of n^{2})?
More specifically,

Question

Is there a $n \times n$ row-monotone submatrix in a $2^{o(n)} \times 2^{2^{o(n)}}$ matrix?

Find row-monotone matrices

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

Find row-monotone matrices

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

There exists an $\Omega\left(n^{2}\right) \times 2^{2^{\tilde{\Omega}(n)}}$ matrix with no $n \times n$ row-monotone submatrix.

Find row-monotone matrices

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

There exists an $\Omega\left(n^{2}\right) \times 2^{2^{\tilde{\Omega}(n)}}$ matrix with no $n \times n$ row-monotone submatrix.

- A sharp transition!

A single-exponential improvement

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

A single-exponential improvement

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

Corollary

Any $O\left(n^{4}\right) \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ monotone submatrix.

A single-exponential improvement

Theorem (Çiçeksiz, J., Räty, Tomon '23)

Any $10 n^{2} \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ row-monotone submatrix.

Corollary

Any $O\left(n^{4}\right) \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix contains an $n \times n$ monotone submatrix.

- $M_{2}(n) \leq 2^{\tilde{O}\left(n^{4}\right)}$.

Future directions

- We know that $n^{n / 2} \leq M_{2}(n) \leq 2^{\tilde{O}\left(n^{4}\right)}$.

Future directions

- We know that $n^{n / 2} \leq M_{2}(n) \leq 2^{\tilde{O}\left(n^{4}\right)}$.

Question
 What is the exponent of $M_{2}(n)$?

Future directions

- An $n \times m^{2^{n}}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

Future directions

- An $n \times m^{2^{n}}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.
- An $O\left(n^{2}\right) \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix \Rightarrow an $n \times n$ row-monotone submatrix.

Future directions

- An $n \times m^{2^{n}}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.
- An $O\left(n^{2}\right) \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix \Rightarrow an $n \times n$ row-monotone submatrix.
- An $m^{2 m} n \times m^{2}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

Future directions

- An $n \times m^{2^{n}}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.
- An $O\left(n^{2}\right) \times 2^{\tilde{O}\left(n^{4}\right)}$ matrix \Rightarrow an $n \times n$ row-monotone submatrix.
- An $m^{2 m} n \times m^{2}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

Question

Are there other regimes?

Future directions

- $K_{n} \square K_{n}$ is a graph with vertex set $[n]^{2}$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x=x^{\prime}$ or $y=y^{\prime}$.

Future directions

- $K_{n} \square K_{n}$ is a graph with vertex set $[n]^{2}$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x=x^{\prime}$ or $y=y^{\prime}$.
- A coloring $c: E\left(K_{n} \square K_{n}\right) \rightarrow[r]$ is monochromatic if all edges of form $\left((x, y),\left(x, y^{\prime}\right)\right)$ share some color c_{1} and all edges of form $\left((x, y),\left(x^{\prime}, y\right)\right)$ share some color c_{2}.

Future directions

- $K_{n} \square K_{n}$ is a graph with vertex set $[n]^{2}$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x=x^{\prime}$ or $y=y^{\prime}$.
- A coloring $c: E\left(K_{n} \square K_{n}\right) \rightarrow[r]$ is monochromatic if all edges of form $\left((x, y),\left(x, y^{\prime}\right)\right)$ share some color c_{1} and all edges of form $\left((x, y),\left(x^{\prime}, y\right)\right)$ share some color c_{2}.
- It is possible that $c_{1} \neq c_{2}$.

Future directions

- $K_{n} \square K_{n}$ is a graph with vertex set $[n]^{2}$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x=x^{\prime}$ or $y=y^{\prime}$.
- A coloring $c: E\left(K_{n} \square K_{n}\right) \rightarrow[r]$ is monochromatic if all edges of form $\left((x, y),\left(x, y^{\prime}\right)\right)$ share some color c_{1} and all edges of form $\left((x, y),\left(x^{\prime}, y\right)\right)$ share some color c_{2}.
- It is possible that $c_{1} \neq c_{2}$.
- Given an $n \times n$ matrix A, color $\left((x, y),\left(x, y^{\prime}\right)\right)$ red if $A_{x, y}<A_{x, y^{\prime}}$ and blue otherwise; color $\left((x, y),\left(x^{\prime}, y\right)\right)$ red if $A_{x, y}<A_{x^{\prime}, y}$ and blue otherwise.

Future directions

- $K_{n} \square K_{n}$ is a graph with vertex set $[n]^{2}$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $x=x^{\prime}$ or $y=y^{\prime}$.
- A coloring $c: E\left(K_{n} \square K_{n}\right) \rightarrow[r]$ is monochromatic if all edges of form $\left((x, y),\left(x, y^{\prime}\right)\right)$ share some color c_{1} and all edges of form $\left((x, y),\left(x^{\prime}, y\right)\right)$ share some color c_{2}.
- It is possible that $c_{1} \neq c_{2}$.
- Given an $n \times n$ matrix A, color $\left((x, y),\left(x, y^{\prime}\right)\right)$ red if $A_{x, y}<A_{x, y^{\prime}}$ and blue otherwise; color $\left((x, y),\left(x^{\prime}, y\right)\right)$ red if $A_{x, y}<A_{x^{\prime}, y}$ and blue otherwise.
- A is monotone \Leftrightarrow the coloring is monochromatic.

Future directions

Question

Determine $f(n ; r)$, the minimum N such that any r-coloring of $E\left(K_{N} \square K_{N}\right)$ contains a monochromatic $K_{n} \square K_{n}$.

Future directions

Question

Determine $f(n ; r)$, the minimum N such that any r-coloring of $E\left(K_{N} \square K_{N}\right)$ contains a monochromatic $K_{n} \square K_{n}$.

- $f(n ; r) \leq r^{r^{O\left(r n^{2}\right)}}$ by Girão, Kronenberg and Scott.

Future directions

Question

Determine $f(n ; r)$, the minimum N such that any r-coloring of $E\left(K_{N} \square K_{N}\right)$ contains a monochromatic $K_{n} \square K_{n}$.

- $f(n ; r) \leq r^{r^{O\left(r n^{2}\right)}}$ by Girão, Kronenberg and Scott.
- A similar pigeonhole argument works.

Future directions

Question

Determine $f(n ; r)$, the minimum N such that any r-coloring of $E\left(K_{N} \square K_{N}\right)$ contains a monochromatic $K_{n} \square K_{n}$.

- $f(n ; r) \leq r^{r^{O\left(r n^{2}\right)}}$ by Girão, Kronenberg and Scott.
- A similar pigeonhole argument works.
- Our method does not seem to generalize.

Future directions

- Similar questions in higher dimensions?

Future directions

- Similar questions in higher dimensions?

Question

Determine $M_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

- $n^{\Omega\left(n^{2}\right)} \leq M_{3}(n) \leq 2^{2^{n^{2}}}$.

Future directions

- Similar questions in higher dimensions?

Question

Determine $M_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

- $n^{\Omega\left(n^{2}\right)} \leq M_{3}(n) \leq 2^{2^{n^{2}}}$.
- Our method does not work.

Future directions

- Similar questions in higher dimensions?

Question

Determine $M_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

- $n^{\Omega\left(n^{2}\right)} \leq M_{3}(n) \leq 2^{2^{n^{2}}}$.
- Our method does not work.
- Our strategy: first have $\{x, y\}$-monotone, and then z-monotone.

Future directions

- Similar questions in higher dimensions?

Question

Determine $M_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

- $n^{\Omega\left(n^{2}\right)} \leq M_{3}(n) \leq 2^{2^{n^{2}}}$.
- Our method does not work.
- Our strategy: first have $\{x, y\}$-monotone, and then z-monotone.
- $\exists 2^{n / 2} \times 2^{n / 2} \times 2^{2^{n}}$ matrix with no $n \times n \times 2 z$-monotone submatrix.

Future directions

- Similar questions in higher dimensions?

Question

Determine $M_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

- $n^{\Omega\left(n^{2}\right)} \leq M_{3}(n) \leq 2^{2^{n^{2}}}$.
- Our method does not work.
- Our strategy: first have $\{x, y\}$-monotone, and then z-monotone.
- $\exists 2^{n / 2} \times 2^{n / 2} \times 2^{2^{n}}$ matrix with no $n \times n \times 2 z$-monotone submatrix.
- One needs to pay $2^{2^{n}}$.

Future directions

Question

Determine $L_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

Future directions

Question

Determine $L_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

- $L_{d}(n) \leq M_{d}\left(2^{n^{d-2}}\right)=2^{2^{2^{n^{d-1}}}}$ by Bucić-Sudakov-Tran and Girão-Kronenberg-Scott.

Future directions

Question

Determine $L_{d}(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

- $L_{d}(n) \leq M_{d}\left(2^{n^{d-2}}\right)=2^{2^{2^{n^{d-1}}}}$ by Bucić-Sudakov-Tran and Girão-Kronenberg-Scott.

The End

Questions? Comments?

