Exponential Erdős-Szekeres theorem for matrices

Zhihan Jin

ETH Zürich

Joint work with Recep Altar Çiçeksiz, Eero Räty and István Tomon

June 12, 2023

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

$$3 \quad 2 \quad 1 \quad 6 \quad 5 \quad 4 \quad 9 \quad 8 \quad 7 \quad 10$$

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

3 2 1 6 5 4 9 8 7 10

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

▶ $(n-1)^2 + 1$ is tight.

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

- ▶ $(n-1)^2 + 1$ is tight.
- Many beautiful proofs.

Any sequence of $(n-1)^2 + 1$ real numbers contains a monotone increasing or decreasing subsequence of length n.

- ▶ $(n-1)^2 + 1$ is tight.
- Many beautiful proofs.
- ▶ Different (natural) generalizations.

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^r} + 1$, there exist n + 1 indices that induce a monotone subsequence in each of the arrays.

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^r} + 1$, there exist n + 1 indices that induce a monotone subsequence in each of the arrays.

 \blacktriangleright Recursively apply Erdős-Szekeres theorem r times.

Theorem (Burkill-Mirsky '73, Kalmanson '73)

Given r arrays each of length $n^{2^r} + 1$, there exist n + 1 indices that induce a monotone subsequence in each of the arrays.

- \blacktriangleright Recursively apply Erdős-Szekeres theorem r times.
- \triangleright $n^{2^r} + 1$ tight.

Question

How to generalize into the matrix setting?

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- A matrix is *monotone* if
 - ▶ all rows are monotone (in the same direction),
 - ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

A matrix is *monotone* if

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

$$\begin{array}{cccccc} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$$

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

$$\begin{array}{cccc} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$$

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

$$egin{array}{cccc} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}$$

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

How to generalize into the matrix setting?

Definition (Fishburn-Graham '93)

- ▶ all rows are monotone (in the same direction),
- ▶ all columns are monotone (in the same direction).

Question

Determine $M_2(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Question

Determine $M_2(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

 $n^{n/2} \le M_2(n) \le \operatorname{twr}_5(O(n)).$

Question

Determine $M_2(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

 $n^{n/2} \le M_2(n) \le \operatorname{twr}_5(O(n)).$

Theorem (Bucić-Sudakov-Tran '22)

 $M_2(n) \le 2^{2^{(2+o(1))n}}.$

Question

Determine $M_2(n)$, the minimum N such that any $N \times N$ real matrix contains an $n \times n$ monotone submatrix.

Theorem (Fishburn-Graham '93)

 $n^{n/2} \le M_2(n) \le \operatorname{twr}_5(O(n)).$

Theorem (Bucić-Sudakov-Tran '22)

 $M_2(n) \le 2^{2^{(2+o(1))n}}.$

▶ The lower bound is due to a probabilistic argument.

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

7	8	9	3	6	9	6	8	9
4	5	6	2	5	8	2	5	7
1	2	3	1	4	7	1	3	4

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

► Matrix A is *lex-increasing* if

$$A_{i,j} \leq A_{k,\ell} \Leftrightarrow i < k \text{ or } i = k \text{ and } j < \ell.$$

Definition

A matrix is *lex-monotone* if one can rotate and/or mirror it to get a lex-increasing matrix.

▶ There are 8 different "types" of lex-monotone matrices.

Zhihan Jin (ETH Zürich)Erdős-Szekeres theorem for matricesJune 12, 20236/20

Question

Determine $L_2(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Question

Determine $L_2(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Theorem (Fishburn-Graham '93)

 $L_2(n) \le M_2(2n^2 - 5n + 4) = \operatorname{twr}_5(O(n^2)).$
Question

Determine $L_2(n)$, the minimum N such that any $N \times N$ real matrix contains a $n \times n$ lex-monotone submatrix.

Theorem (Fishburn-Graham '93)

$$L_2(n) \le M_2(2n^2 - 5n + 4) = \operatorname{twr}_5(O(n^2)).$$

Theorem (Bucić-Sudakov-Tran '22)

$$L_2(n) \le M_2(2n^2 - 5n + 4) = 2^{2^{O(n^2)}}.$$

An $O(n^4) \times 2^{O(n^4(\log n)^2)}$ real matrix contains a $n \times n$ monotone submatrix. In particular, $M_2(n) = 2^{O(n^4(\log n)^2)}$.

An $O(n^4) \times 2^{O(n^4(\log n)^2)}$ real matrix contains a $n \times n$ monotone submatrix. In particular, $M_2(n) = 2^{O(n^4(\log n)^2)}$.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

 $L_2(n) \le M_2(2n^2 - 5n + 4) \le 2^{O(n^8(\log n)^2)}.$

<u>Goal</u>: show that $M_2(n) = 2^{2^{O(n)}}$

• Restricted to a $n^2 \times N$ matrix with $N \approx 2^{2^{O(n)}}$.

<u>Goal</u>: show that $M_2(n) = 2^{2^{O(n)}}$

• Restricted to a $n^2 \times N$ matrix with $N \approx 2^{2^{O(n)}}$.

> Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.

- Restricted to a $n^2 \times N$ matrix with $N \approx 2^{2^{O(n)}}$.
- > Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.
- Apply pigeonhole principle on the index sets of the monotone sub-columns and the direction.

- Restricted to a $n^2 \times N$ matrix with $N \approx 2^{2^{O(n)}}$.
- > Apply Erdős-Szekeres theorem on each column to get a monotone sub-column of size n.
- Apply pigeonhole principle on the index sets of the monotone sub-columns and the direction.

• Get a column-monotone matrix of size
$$n \times N/2 \binom{n^2}{n} \approx n \times 2^{2^{O(n)}}.$$

<u>Goal</u>: show that $M_2(n) = 2^{2^{O(n)}}$. • Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- ▶ Apply multi-array Erdős-Szekeres.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- ▶ Apply multi-array Erdős-Szekeres.
 - Row-monotone submatrix of size $n \times n$.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- ▶ Apply multi-array Erdős-Szekeres.
 - Row-monotone submatrix of size $n \times n$.
 - ▶ This requires n^{2^n} columns.

- Our matrix is $n \times 2^{2^{O(n)}}$ and column-monotone.
- ▶ Apply multi-array Erdős-Szekeres.
 - Row-monotone submatrix of size $n \times n$.
 - ▶ This requires n^{2^n} columns.
- A $n \times n$ monotone submatrix!

$$\mathbb{R}^{n^2 \times N} \ni A$$

$$\mathbb{R}^{n^2 \times N} \ni A \xrightarrow{\text{pay exp}(n) \text{ in columns}}_{\text{column-monotone}} B$$

$$\mathbb{R}^{n^2 \times N} \ni A \xrightarrow[]{\text{pay exp}(n) \text{ in columns}}_{\text{column-monotone}} B \xrightarrow[]{\text{pay } 2^{2^n} \text{ in columns}}_{\text{row-monotone}} C$$

Question

Can we do better if we start with more rows (instead of n^2)?

$$\mathbb{R}^{n^2 \times N} \ni A \xrightarrow[]{\text{pay exp}(n) \text{ in columns}}_{\text{column-monotone}} B \xrightarrow[]{\text{pay } 2^{2^n} \text{ in columns}}_{\text{row-monotone}} C$$

Question

Can we do better if we start with more rows (instead of n^2)?

More specifically,

Question
Is there a
$$n \times n$$
 row-monotone submatrix in a $2^{o(n)} \times 2^{2^{o(n)}}$ matrix?

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

There exists an $\Omega(n^2) \times 2^{2^{\tilde{\Omega}(n)}}$ matrix with no $n \times n$ row-monotone submatrix.

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Theorem (Çiçeksiz, J., Räty, Tomon '23)

There exists an $\Omega(n^2) \times 2^{2^{\tilde{\Omega}(n)}}$ matrix with no $n \times n$ row-monotone submatrix.

► A sharp transition!

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Corollary

Any $O(n^4) \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ monotone submatrix.

Any $10n^2 \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ row-monotone submatrix.

Corollary

Any $O(n^4) \times 2^{\tilde{O}(n^4)}$ matrix contains an $n \times n$ monotone submatrix.

$$\blacktriangleright M_2(n) \le 2^{\tilde{O}(n^4)}.$$

• We know that $n^{n/2} \leq M_2(n) \leq 2^{\tilde{O}(n^4)}$.

• We know that
$$n^{n/2} \leq M_2(n) \leq 2^{\tilde{O}(n^4)}$$
.

Question

What is the exponent of $M_2(n)$?

• An $n \times m^{2^n}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

An n× m^{2ⁿ} matrix ⇒ an n× m row-monotone submatrix.
An O(n²) × 2^{Õ(n⁴)} matrix ⇒ an n× n row-monotone submatrix.

- An $n \times m^{2^n}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.
- ▶ An $O(n^2) \times 2^{\tilde{O}(n^4)}$ matrix ⇒ an $n \times n$ row-monotone submatrix.
- ▶ An $m^{2m}n \times m^2$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

- An $n \times m^{2^n}$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.
- ▶ An $O(n^2) \times 2^{\tilde{O}(n^4)}$ matrix ⇒ an $n \times n$ row-monotone submatrix.
- ▶ An $m^{2m}n \times m^2$ matrix \Rightarrow an $n \times m$ row-monotone submatrix.

Question

Are there other regimes?

• $K_n \Box K_n$ is a graph with vertex set $[n]^2$ where $(x, y) \sim (x', y')$ if x = x' or y = y'.

Future directions

- $K_n \Box K_n$ is a graph with vertex set $[n]^2$ where $(x, y) \sim (x', y')$ if x = x' or y = y'.
- ▶ A coloring $c : E(K_n \Box K_n) \to [r]$ is monochromatic if all edges of form ((x, y), (x, y')) share some color c_1 and all edges of form ((x, y), (x', y)) share some color c_2 .

Future directions

- $K_n \Box K_n$ is a graph with vertex set $[n]^2$ where $(x, y) \sim (x', y')$ if x = x' or y = y'.
- ▶ A coloring $c : E(K_n \Box K_n) \to [r]$ is monochromatic if all edges of form ((x, y), (x, y')) share some color c_1 and all edges of form ((x, y), (x', y)) share some color c_2 .

• It is possible that $c_1 \neq c_2$.

- $K_n \Box K_n$ is a graph with vertex set $[n]^2$ where $(x, y) \sim (x', y')$ if x = x' or y = y'.
- ▶ A coloring $c : E(K_n \Box K_n) \to [r]$ is monochromatic if all edges of form ((x, y), (x, y')) share some color c_1 and all edges of form ((x, y), (x', y)) share some color c_2 .

• It is possible that $c_1 \neq c_2$.

• Given an $n \times n$ matrix A, color ((x, y), (x, y')) red if $A_{x,y} < A_{x,y'}$ and blue otherwise; color ((x, y), (x', y)) red if $A_{x,y} < A_{x',y}$ and blue otherwise.

- $K_n \Box K_n$ is a graph with vertex set $[n]^2$ where $(x, y) \sim (x', y')$ if x = x' or y = y'.
- ▶ A coloring $c : E(K_n \Box K_n) \to [r]$ is monochromatic if all edges of form ((x, y), (x, y')) share some color c_1 and all edges of form ((x, y), (x', y)) share some color c_2 .

• It is possible that $c_1 \neq c_2$.

• Given an $n \times n$ matrix A, color ((x, y), (x, y')) red if $A_{x,y} < A_{x,y'}$ and blue otherwise; color ((x, y), (x', y)) red if $A_{x,y} < A_{x',y}$ and blue otherwise.

• A is monotone \Leftrightarrow the coloring is monochromatic.
Determine f(n; r), the minimum N such that any r-coloring of $E(K_N \Box K_N)$ contains a monochromatic $K_n \Box K_n$.

Determine f(n; r), the minimum N such that any r-coloring of $E(K_N \Box K_N)$ contains a monochromatic $K_n \Box K_n$.

▶ $f(n; r) \leq r^{r^{O(rn^2)}}$ by Girão, Kronenberg and Scott.

Determine f(n; r), the minimum N such that any r-coloring of $E(K_N \Box K_N)$ contains a monochromatic $K_n \Box K_n$.

- ▶ $f(n; r) \le r^{r^{O(rn^2)}}$ by Girão, Kronenberg and Scott.
 - ► A similar pigeonhole argument works.

Determine f(n; r), the minimum N such that any r-coloring of $E(K_N \Box K_N)$ contains a monochromatic $K_n \Box K_n$.

- ▶ $f(n; r) \leq r^{r^{O(rn^2)}}$ by Girão, Kronenberg and Scott.
 - ▶ A similar pigeonhole argument works.
- Our method does not seem to generalize.

Future directions

▶ Similar questions in higher dimensions?

Question

Determine $M_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

►
$$n^{\Omega(n^2)} \le M_3(n) \le 2^{2^{n^2}}$$

.

Question

Determine $M_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

►
$$n^{\Omega(n^2)} \le M_3(n) \le 2^{2^{n^2}}$$

Our method does not work.

Question

Determine $M_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

•
$$n^{\Omega(n^2)} \le M_3(n) \le 2^{2^{n^2}}$$
.

▶ Our method does not work.

• Our strategy: first have $\{x, y\}$ -monotone, and then z-monotone.

.

Question

Determine $M_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

•
$$n^{\Omega(n^2)} \le M_3(n) \le 2^{2^{n^2}}$$

▶ Our method does not work.

• Our strategy: first have $\{x, y\}$ -monotone, and then z-monotone.

► $\exists 2^{n/2} \times 2^{n/2} \times 2^{2^n}$ matrix with no $n \times n \times 2$ z-monotone submatrix.

.

Question

Determine $M_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ monotone submatrix.

•
$$n^{\Omega(n^2)} \le M_3(n) \le 2^{2^{n^2}}$$

▶ Our method does not work.

- Our strategy: first have $\{x, y\}$ -monotone, and then z-monotone.
- ► $\exists 2^{n/2} \times 2^{n/2} \times 2^{2^n}$ matrix with no $n \times n \times 2$ z-monotone submatrix.
- One needs to pay 2^{2^n} .

Determine $L_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

Determine $L_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

►
$$L_d(n) \le M_d(2^{n^{d-2}}) = 2^{2^{2^{n^{d-1}}}}$$
 by Bucić-Sudakov-Tran and Girão-Kronenberg-Scott.

Determine $L_d(n)$, the minimum N such that any d-dimensional $N \times \cdots \times N$ real matrix contains a $n \times \cdots \times n$ lex-monotone submatrix.

►
$$L_d(n) \le M_d(2^{n^{d-2}}) = 2^{2^{2^{n^{d-1}}}}$$
 by Bucić-Sudakov-Tran and Girão-Kronenberg-Scott.

The End

Questions? Comments?