Difference-isomorphic graph families

Zhihan Jin

ETH Zürich
Joint work with Lior Gishboliner and Benny Sudakov
November 16, 2023

Set families with certain properties

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor/ 2\rfloor}$.

Set families with certain properties

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.

Set families with certain properties

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If \mathcal{A} is a family of distinct r-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

Set families with certain properties

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If \mathcal{A} is a family of distinct r-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

- The extremal example: $\{S \subseteq[n]: 1 \in S,|S|=r\}$.

Set families with certain properties

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If \mathcal{A} is a family of distinct r-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

- The extremal example: $\{S \subseteq[n]: 1 \in S,|S|=r\}$.
- If $|\mathcal{A}| \approx\binom{n-1}{r-1}$, then \mathcal{A} is "close" to the extremal example.

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on $[n]$ s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to K_{4}.

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on $[n]$ s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 22^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to K_{4}.

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_{t}, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-\binom{t}{2} \text {. }}$

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on $[n]$ s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to K_{4}.

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_{t}, then $|\mathcal{G}| \leq 2\binom{n}{2}-\binom{t}{2}$.

- $\triangle \Rightarrow C_{n}$,

Graph families with intersection properties

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (\triangle), then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to K_{4}.

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_{t}, then $|\mathcal{G}| \leq 2\binom{n}{2}-\binom{t}{2}$.

- $\triangle \Rightarrow C_{n}, \quad|G| \leq 2^{\binom{n}{2}-n}$ by Leader, Ranđelović and Tan.

Families with difference properties

Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}|>\delta \cdot k^{n^{2}}$, then $\exists A_{1}, \ldots, A_{k} \in \mathcal{A}, X \subseteq[n]$ s.t. $A_{i+1}-A_{i}=\mathbb{1}_{X \times X}$ for all i.

Families with difference properties

Conjecture (Gowers, 2009)
 $\forall \delta>0 \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}|>\delta \cdot k^{n^{2}}$, then $\exists A_{1}, \ldots, A_{k} \in \mathcal{A}, X \subseteq[n]$ s.t. $A_{i+1}-A_{i}=\mathbb{1}_{X \times X}$ for all i.

- A special case of the polynomial density Hales-Jewett theorem/conjecture.

Families with difference properties

Conjecture (Gowers, 2009)
 $\forall \delta>0 \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}|>\delta \cdot k^{n^{2}}$, then $\exists A_{1}, \ldots, A_{k} \in \mathcal{A}, X \subseteq[n]$ s.t. $A_{i+1}-A_{i}=\mathbb{1}_{X \times X}$ for all i.

- A special case of the polynomial density Hales-Jewett theorem/conjecture.
- When $k=2$ and all $A \in \mathcal{A}$ are symmetric,

Families with difference properties

Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}|>\delta \cdot k^{n^{2}}$, then $\exists A_{1}, \ldots, A_{k} \in \mathcal{A}, X \subseteq[n]$ s.t. $A_{i+1}-A_{i}=\mathbb{1}_{X \times X}$ for all i.

- A special case of the polynomial density Hales-Jewett theorem/conjecture.
- When $k=2$ and all $A \in \mathcal{A}$ are symmetric,

Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if \mathcal{G} is a family of graphs with $|\mathcal{G}|>\delta 2\binom{n}{2}$, then $\exists G_{1}, G_{2} \in \mathcal{G}$ s.t. $G_{1} \subset G_{2}$ and $G_{2} \backslash G_{1}$ is a clique.

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:
- $\mathcal{H}:=$ all disconnected graphs by AGKMS 2023;

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:
- $\mathcal{H}:=$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H}:=$ all non-Hamiltonian graphs by AGKMS 2023;

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:
- $\mathcal{H}:=$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H}:=$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H}:=$ all stars of fixed size by Alon 2023+;

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:
- $\mathcal{H}:=$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H}:=$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H}:=$ all stars of fixed size by Alon 2023+;
- $\mathcal{H}:=$ all matchings of fixed size by Alon 2023+;

Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=\left([n],\left(E\left(G_{1}\right) \backslash E\left(G_{2}\right)\right) \cup\left(E\left(G_{2}\right) \backslash E\left(G_{1}\right)\right)\right)$.

- Let \mathcal{H} be a family of graphs on $[n]$.
- How large can $|\mathcal{G}|$ be if $G_{1} \oplus G_{2} \notin \mathcal{H}$ for all $G_{1}, G_{2} \in \mathcal{G}$?
- Also called "graph-codes".
- Some known cases:
- $\mathcal{H}:=$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H}:=$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H}:=$ all stars of fixed size by Alon 2023+;
- $\mathcal{H}:=$ all matchings of fixed size by Alon 2023+;

Question(Alon 2023+)

When \mathcal{H} contains all the K_{4} 's, does $|\mathcal{G}|=o\left(2{ }_{\binom{n}{2}}^{\text {' }}\right)$?

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023) How large can $|\mathcal{G}|$ be?

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

 How large can $|\mathcal{G}|$ be?- Take \mathcal{G} to be the set of all the perfect matchings.

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

 How large can $|\mathcal{G}|$ be?- Take \mathcal{G} to be the set of all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- Take \mathcal{G} to be the set of all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- Graphs (perfect matchings) in \mathcal{G} are isomorphic.

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- Take \mathcal{G} to be the set of all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- Graphs (perfect matchings) in \mathcal{G} are isomorphic.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- Take \mathcal{G} to be the set of all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- Graphs (perfect matchings) in \mathcal{G} are isomorphic.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.
- Does $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ enforce graphs in \mathcal{G} to look alike?

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- Take \mathcal{G} to be the set of all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- Graphs (perfect matchings) in \mathcal{G} are isomorphic.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.
- Does $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ enforce graphs in \mathcal{G} to look alike?
- If so, maybe $|\mathcal{G}| \leq n^{O(n)}$ as there are n ! isomorphisms.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.
- $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.
- $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.
- $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.
- $|\mathcal{G}|=2^{\# \text { (pairs of edges) }}=2^{2\binom{k}{2}}=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)}$

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.
- $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.
- $|\mathcal{G}|=2^{\# \text { (pairs of edges) }}=2^{2\binom{k}{2}}=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)} \gg n^{O(n)}$.

A better example

- Assume $n=2 k$ and the vertices are $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}$.
- Let $\psi \in S_{n}$ such that $\psi\left(u_{i}\right)=v_{i}, \psi\left(v_{i}\right)=u_{i}$.
- Edges are paired by $\left(u_{i} u_{j}, v_{i} v_{j}\right)$ and $\left(u_{i} v_{j}, v_{i} u_{j}\right)$.
- $\mathcal{G}:=$ all graphs G containing one edge in each pair.
- Fix a single pair $(e, f): \psi(e)=f, \psi(f)=e$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}$ or $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{f\},\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\}$.
- $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.
- $|\mathcal{G}|=2^{\# \text { (pairs of edges) }}=2^{2\binom{k}{2}}=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)} \gg n^{O(n)}$.
- $\frac{n}{2}$ comes from edges $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k} v_{k}$.

Our results

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

Our results

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- This is not true when $n=2,3,4,5$.

Our results

Theorem (Gishboliner-J.-Sudakov 23+)
 For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- This is not true when $n=2,3,4,5$.
- The construction works for all involutions, i.e. ψ^{2} is identity.

Our results

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- This is not true when $n=2,3,4,5$.
- The construction works for all involutions, i.e. ψ^{2} is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on $[n]$.

- Either \mathcal{G} a subfamily of the extremal example;
- or $|\mathcal{G}|<\left(1-n^{100000 \sqrt{n}}\right) 2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

Our results

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- This is not true when $n=2,3,4,5$.
- The construction works for all involutions, i.e. ψ^{2} is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on $[n]$.

- Either \mathcal{G} a subfamily of the extremal example;
- or $|\mathcal{G}|<\left(1-n^{100000 \sqrt{n}}\right) 2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.
- All the above can be extended to families of r-graphs $(n \gg r)$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ has two parts: $G^{\prime} \cap G$ and $G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ has two parts: $G^{\prime} \cap G$ and $G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (and also $G \backslash G^{\prime}$) $\cdots \cdots \cdot 2^{m}$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ has two parts: $G^{\prime} \cap G$ and $G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (and also $G \backslash G^{\prime}$) $\cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \leftrightarrow G \backslash G^{\prime} \cdots \cdots n$!.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ has two parts: $G^{\prime} \cap G$ and $G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (and also $G \backslash G^{\prime}$) $\cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \leftrightarrow G \backslash G^{\prime} \cdots \cdots n$!.
- $|\mathcal{G}| \leq 2^{m} n$!.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- All graphs in \mathcal{G} have the same number of edges, say m.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ has two parts: $G^{\prime} \cap G$ and $G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (and also $G \backslash G^{\prime}$) $\cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \leftrightarrow G \backslash G^{\prime} \cdots \cdots n$!.
- $|\mathcal{G}| \leq 2^{m} n$!. What if $m>\binom{n}{2} / 2$?

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note that $\mathcal{G}^{\prime}:=\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note that $\mathcal{G}^{\prime}:=\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note that $\mathcal{G}^{\prime}:=\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.
- We may assume $m \leq \frac{1}{2}\binom{n}{2}$.

An approximate upper bound

Proposition

If \mathcal{G} is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note that $\mathcal{G}^{\prime}:=\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.
- We may assume $m \leq \frac{1}{2}\binom{n}{2}$.
- $|\mathcal{G}| \leq 2^{\binom{n}{2} / 2} n!=2^{(1+o(1))\binom{n}{2} / 2}$.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow$

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.
- More restrictions if $|C|>2$.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.
- More restrictions if $|C|>2$.
- It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.
- More restrictions if $|C|>2$.
- It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. φ^{2} is identity.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.
- More restrictions if $|C|>2$.
- It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. φ^{2} is identity.
- $\stackrel{\varphi}{\cong}$ is an equivalence relation when φ^{2} is identity.

Why are involutions special?

Notation: $G_{1} \stackrel{\varphi}{\cong} G_{2} \Longleftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- Every $\varphi \in S_{n}$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of K_{n}.
- $\left.G_{1} \stackrel{\varphi}{\cong} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{C}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{C}$ for every cycle C.
- In particular, G_{1}, G_{2} have the same number of edges on C.
- More restrictions if $|C|>2$.
- It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. φ^{2} is identity.
$\stackrel{\varphi}{\cong}$ is an equivalence relation when φ^{2} is identity.
- Many $G_{1} \stackrel{\varphi}{\cong} G_{2}$ in $\mathcal{G} \Rightarrow \exists$ many graphs in \mathcal{G} forming a φ-clique.

A sketch of the upper bound proof

$$
N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\} .
$$

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".
- Why do we need the first case?

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".
- Why do we need the first case? $\Rightarrow\left|S_{n}\right|=n!\gg 2^{n}$

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".
- Why do we need the first case? $\Rightarrow\left|S_{n}\right|=n!\gg 2^{n}$
- Exceptional: ψ^{2} is identity, $\varphi \approx \psi, \ldots$

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".
- Why do we need the first case? $\Rightarrow\left|S_{n}\right|=n!\gg 2^{n}$
- Exceptional: ψ^{2} is identity, $\varphi \approx \psi, \ldots$
- $e_{\psi}\left(N_{\varphi}(G)\right) \geq M^{2} \cdot 2^{-n / 100}$

A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G^{\prime}\right\}$.
- $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{G_{1}, G_{2} \in \mathcal{G}: G \stackrel{\varphi}{\cong} G_{1}, G \stackrel{\varphi}{\cong} G_{1}, G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.

Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".
- Why do we need the first case? $\Rightarrow\left|S_{n}\right|=n!\gg 2^{n}$
- Exceptional: ψ^{2} is identity, $\varphi \approx \psi, \ldots$
- $e_{\psi}\left(N_{\varphi}(G)\right) \geq M^{2} \cdot 2^{-n / 100}$
$\Rightarrow \exists \psi$-clique of size at least $e_{\psi}\left(N_{\varphi}(G)\right) /\left|N_{\varphi}(G)\right|$.

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) when ψ is not "close" to φ and (2) otherwise.

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) when ψ is not "close" to φ and (2) otherwise.
- Get (α) unless (2) is violated for some exceptional (φ, ψ).

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) when ψ is not "close" to φ and (2) otherwise.
- Get (α) unless (2) is violated for some exceptional (φ, ψ).
- In particular, ψ is an involution.

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) when ψ is not "close" to φ and (2) otherwise.
- Get (α) unless (2) is violated for some exceptional (φ, ψ).
- In particular, ψ is an involution.
- There exists a large ψ-clique in $N_{\varphi}(G) \Rightarrow(\beta)$.

A sketch of the upper bound proof

Lemma (without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless φ, ψ are "close".
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless (φ, ψ) is "exceptional".

Lemma

(α) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
(β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) when ψ is not "close" to φ and (2) otherwise.
- Get (α) unless (2) is violated for some exceptional (φ, ψ).
- In particular, ψ is an involution.
- There exists a large ψ-clique in $N_{\varphi}(G) \Rightarrow(\beta)$.
- Assume (α) happens $((\beta)$ is more complicated).

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.
- $|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.
- $|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right|$

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.
- $|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.
- $|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- For ψ "close" to $\varphi, \#\left\{G_{1} \stackrel{\psi}{\cong} G_{2}\right\} \leq\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}$.

A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

- Fix any $G_{0} \in \mathcal{G}$ and take $\varphi \in S_{n}$ that maximizes $\left|N_{\varphi}\left(G_{0}\right)\right|$.
- $|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \stackrel{\psi}{\cong} G_{2}\right\}$.
- For ψ "close" to $\varphi, \#\left\{G_{1} \stackrel{\psi}{\cong} G_{2}\right\} \leq\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}$.
- For other $\psi, \#\left\{G_{1} \stackrel{\psi}{\cong} G_{2}\right\} \leq\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n}$.

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right|
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n}
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200}
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} .
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200}
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400}
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right|
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n}
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n} \ll M \cdot 2^{-n / 400} .
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n} \ll M \cdot 2^{-n / 400} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 400}!
\end{aligned}
$$

A sketch of the upper bound proof

Condition: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.

$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Longrightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n} \ll M \cdot 2^{-n / 400} . \\
\Longrightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 400}!\quad \text { NiCe! }
\end{aligned}
$$

Further directions

Further directions

Any suggestions?

The End

Questions? Comments?

