Zhihan Jin

ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

November 16, 2023

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor\}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

▶ The extremal example: $\{S \subseteq [n] : 1 \in S, |S| = r\}$.

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

- ▶ The extremal example: $\{S \subseteq [n] : 1 \in S, |S| = r\}$.
- ▶ If $|\mathcal{A}| \approx \binom{n-1}{r-1}$, then \mathcal{A} is "close" to the extremal example.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

 \triangleright The extremal example: all G containing a fixed triangle.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- ► Confirmed by Ellis, Filmus and Friedgut in 2012.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (Δ) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

 $ightharpoonup \triangle \Rightarrow C_n$,

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common triangle (\triangle) , then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

 $ightharpoonup \triangle \Rightarrow C_n, \quad |G| \le 2^{\binom{n}{2}-n}$ by Leader, Ranđelović and Tan.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}| > \delta \cdot k^{n^2}$, then $\exists A_1, \ldots, A_k \in \mathcal{A}, X \subseteq [n]$ s.t. $A_{i+1} - A_i = \mathbb{1}_{X \times X}$ for all i.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}| > \delta \cdot k^{n^2}$, then $\exists A_1, \ldots, A_k \in \mathcal{A}, X \subseteq [n]$ s.t. $A_{i+1} - A_i = \mathbb{1}_{X \times X}$ for all i.

► A special case of the polynomial density Hales-Jewett theorem/conjecture.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}| > \delta \cdot k^{n^2}$, then $\exists A_1, \ldots, A_k \in \mathcal{A}, X \subseteq [n]$ s.t. $A_{i+1} - A_i = \mathbb{1}_{X \times X}$ for all i.

- ► A special case of the polynomial density Hales-Jewett theorem/conjecture.
- ▶ When k = 2 and all $A \in \mathcal{A}$ are symmetric,

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of $n \times n$ matrices with entries in $\{1, \ldots, k\}$ with $|\mathcal{A}| > \delta \cdot k^{n^2}$, then $\exists A_1, \ldots, A_k \in \mathcal{A}, X \subseteq [n]$ s.t. $A_{i+1} - A_i = \mathbb{1}_{X \times X}$ for all i.

- ▶ A special case of the polynomial density Hales-Jewett theorem/conjecture.
- ▶ When k = 2 and all $A \in \mathcal{A}$ are symmetric,

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{G} is a family of graphs with $|\mathcal{G}| > \delta 2^{\binom{n}{2}}$, then $\exists G_1, G_2 \in \mathcal{G} \text{ s.t. } G_1 \subset G_2 \text{ and } G_2 \setminus G_1 \text{ is a clique.}$

Notation: $G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

ightharpoonup Let \mathcal{H} be a family of graphs on [n].

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ► Also called "graph-codes".

Notation: $G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ► Also called "graph-codes".
- ➤ Some known cases:

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ▶ Also called "graph-codes".
- Some known cases:
 - \mathcal{H} := all disconnected graphs by AGKMS 2023;

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ▶ Also called "graph-codes".
- ➤ Some known cases:
 - \mathcal{H} := all disconnected graphs by AGKMS 2023;
 - \mathcal{H} := all non-Hamiltonian graphs by AGKMS 2023;

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ▶ Also called "graph-codes".
- ➤ Some known cases:
 - \mathcal{H} := all disconnected graphs by AGKMS 2023;
 - \triangleright \mathcal{H} := all non-Hamiltonian graphs by AGKMS 2023;
 - \triangleright \mathcal{H} := all stars of fixed size by Alon 2023+;

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ▶ Also called "graph-codes".
- ➤ Some known cases:
 - $\mathcal{H} := \text{all disconnected graphs by AGKMS 2023};$
 - \triangleright \mathcal{H} := all non-Hamiltonian graphs by AGKMS 2023;
 - \triangleright \mathcal{H} := all stars of fixed size by Alon 2023+;
 - \mathcal{H} := all matchings of fixed size by Alon 2023+;.

Notation:
$$G_1 \oplus G_2 := ([n], (E(G_1) \setminus E(G_2)) \cup (E(G_2) \setminus E(G_1))).$$

- ightharpoonup Let \mathcal{H} be a family of graphs on [n].
- ▶ How large can $|\mathcal{G}|$ be if $G_1 \oplus G_2 \notin \mathcal{H}$ for all $G_1, G_2 \in \mathcal{G}$?
 - ▶ Also called "graph-codes".
- ➤ Some known cases:
 - $\mathcal{H} := \text{all disconnected graphs by AGKMS 2023};$
 - \triangleright \mathcal{H} := all non-Hamiltonian graphs by AGKMS 2023;
 - \mathcal{H} := all stars of fixed size by Alon 2023+;
 - \mathcal{H} := all matchings of fixed size by Alon 2023+;.

Question(Alon 2023+)

When \mathcal{H} contains all the K_4 's, does $|\mathcal{G}| = o(2^{\binom{n}{2}})$?

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

ightharpoonup Take \mathcal{G} to be the set of all the perfect matchings.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- \triangleright Take \mathcal{G} to be the set of all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- \triangleright Take \mathcal{G} to be the set of all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - \triangleright Graphs (perfect matchings) in \mathcal{G} are isomorphic.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- ▶ Take \mathcal{G} to be the set of all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - ▶ Graphs (perfect matchings) in \mathcal{G} are isomorphic.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- \triangleright Take \mathcal{G} to be the set of all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - ▶ Graphs (perfect matchings) in \mathcal{G} are isomorphic.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$
- ▶ Does $G_1 \setminus G_2 \cong G_2 \setminus G_1$ enforce graphs in \mathcal{G} to look alike?

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- \triangleright Take \mathcal{G} to be the set of all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - ▶ Graphs (perfect matchings) in \mathcal{G} are isomorphic.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$
- ▶ Does $G_1 \setminus G_2 \cong G_2 \setminus G_1$ enforce graphs in \mathcal{G} to look alike?
 - ▶ If so, maybe $|\mathcal{G}| \leq n^{O(n)}$ as there are n! isomorphisms.

A better example

Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- ▶ Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by (u_iu_j, v_iv_j) and (u_iv_j, v_iu_j) .

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by (u_iu_j, v_iv_j) and (u_iv_j, v_iu_j) .
- $ightharpoonup \mathcal{G} := ext{all graphs } G ext{ containing one edge in each pair.}$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ► Edges are paired by $(u_i u_j, v_i v_j)$ and $(u_i v_j, v_i u_j)$.
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by $(u_i u_j, v_i v_j)$ and $(u_i v_j, v_i u_j)$.
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.
 - $(G_1 \setminus G_2)\big|_{e,f} = (G_2 \setminus G_1)\big|_{e,f} = \emptyset \text{ or }$ $(G_1 \setminus G_2)\big|_{e,f} = \{e\}, (G_2 \setminus G_1)\big|_{e,f} = \{f\} \text{ or }$ $(G_1 \setminus G_2)\big|_{e,f} = \{f\}, (G_2 \setminus G_1)\big|_{e,f} = \{e\}.$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by $(u_i u_j, v_i v_j)$ and $(u_i v_j, v_i u_j)$.
- $ightharpoonup \mathcal{G} := ext{all graphs } G ext{ containing one edge in each pair.}$
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.
 - ▶ $(G_1 \setminus G_2)|_{e,f} = (G_2 \setminus G_1)|_{e,f} = \emptyset$ or $(G_1 \setminus G_2)|_{e,f} = \{e\}, (G_2 \setminus G_1)|_{e,f} = \{f\}$ or $(G_1 \setminus G_2)|_{e,f} = \{f\}, (G_2 \setminus G_1)|_{e,f} = \{e\}.$
 - $\psi\left(\left(G_1\setminus G_2\right)\big|_{e,f}\right) = \left(G_2\setminus G_1\right)\big|_{e,f}.$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by (u_iu_j, v_iv_j) and (u_iv_j, v_iu_j) .
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.

▶
$$(G_1 \setminus G_2)|_{e,f} = (G_2 \setminus G_1)|_{e,f} = \emptyset$$
 or $(G_1 \setminus G_2)|_{e,f} = \{e\}, (G_2 \setminus G_1)|_{e,f} = \{f\}$ or $(G_1 \setminus G_2)|_{e,f} = \{f\}, (G_2 \setminus G_1)|_{e,f} = \{e\}.$

- $\psi\left(\left(G_1\setminus G_2\right)\big|_{e,f}\right) = \left(G_2\setminus G_1\right)\big|_{e,f}.$
- $\qquad \qquad \psi(G_1 \setminus G_2) = G_2 \setminus G_1.$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by (u_iu_j, v_iv_j) and (u_iv_j, v_iu_j) .
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.

$$(G_1 \setminus G_2)|_{e,f} = (G_2 \setminus G_1)|_{e,f} = \emptyset \text{ or } (G_1 \setminus G_2)|_{e,f} = \{e\}, (G_2 \setminus G_1)|_{e,f} = \{f\} \text{ or } (G_1 \setminus G_2)|_{e,f} = \{f\}, (G_2 \setminus G_1)|_{e,f} = \{e\}.$$

- $\psi\left(\left(G_1\setminus G_2\right)\big|_{e,f}\right) = \left(G_2\setminus G_1\right)\big|_{e,f}.$
- $\qquad \qquad \psi(G_1 \setminus G_2) = G_2 \setminus G_1.$
- $|\mathcal{G}| = 2^{\#(\text{pairs of edges})} = 2^{2\binom{k}{2}} = 2^{\frac{1}{2}(\binom{n}{2} \frac{n}{2})}$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by (u_iu_j, v_iv_j) and (u_iv_j, v_iu_j) .
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.

$$(G_1 \setminus G_2)|_{e,f} = (G_2 \setminus G_1)|_{e,f} = \emptyset \text{ or } (G_1 \setminus G_2)|_{e,f} = \{e\}, (G_2 \setminus G_1)|_{e,f} = \{f\} \text{ or } (G_1 \setminus G_2)|_{e,f} = \{f\}, (G_2 \setminus G_1)|_{e,f} = \{e\}.$$

- $\psi\left(\left(G_1\setminus G_2\right)\big|_{e,f}\right) = \left(G_2\setminus G_1\right)\big|_{e,f}.$
- $\qquad \qquad \psi(G_1 \setminus G_2) = G_2 \setminus G_1.$
- $|\mathcal{G}| = 2^{\#(\text{pairs of edges})} = 2^{2\binom{k}{2}} = 2^{\frac{1}{2}(\binom{n}{2} \frac{n}{2})} \gg n^{O(n)}.$

- Assume n = 2k and the vertices are $u_1, \ldots, u_k, v_1, \ldots, v_k$.
- Let $\psi \in S_n$ such that $\psi(u_i) = v_i, \psi(v_i) = u_i$.
- ▶ Edges are paired by $(u_i u_j, v_i v_j)$ and $(u_i v_j, v_i u_j)$.
- \triangleright \mathcal{G} := all graphs G containing one edge in each pair.
- Fix a single pair (e, f): $\psi(e) = f, \psi(f) = e$.

▶
$$(G_1 \setminus G_2)|_{e,f} = (G_2 \setminus G_1)|_{e,f} = \emptyset$$
 or $(G_1 \setminus G_2)|_{e,f} = \{e\}, (G_2 \setminus G_1)|_{e,f} = \{f\}$ or $(G_1 \setminus G_2)|_{e,f} = \{f\}, (G_2 \setminus G_1)|_{e,f} = \{e\}.$

$$\psi\left(\left(G_1\setminus G_2\right)\big|_{e,f}\right) = \left(G_2\setminus G_1\right)\big|_{e,f}.$$

- $\qquad \qquad \psi(G_1 \setminus G_2) = G_2 \setminus G_1.$
- $|\mathcal{G}| = 2^{\#(\text{pairs of edges})} = 2^{2\binom{k}{2}} = 2^{\frac{1}{2}(\binom{n}{2} \frac{n}{2})} \gg n^{O(n)}.$
 - $ightharpoonup \frac{n}{2}$ comes from edges $u_1v_1, u_2v_2, \ldots, u_kv_k$.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor\frac{n}{2}\rfloor)}$.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor\frac{n}{2}\rfloor)}$.

▶ This is not true when n = 2, 3, 4, 5.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ This is not true when n = 2, 3, 4, 5.
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ This is not true when n = 2, 3, 4, 5.
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on [n].

- \triangleright Either \mathcal{G} a subfamily of the extremal example;
- $or |\mathcal{G}| < (1 n^{100000\sqrt{n}}) 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}.$

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ This is not true when n = 2, 3, 4, 5.
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on [n].

- \triangleright Either \mathcal{G} a subfamily of the extremal example;
- $ightharpoonup or |\mathcal{G}| < (1 n^{100000\sqrt{n}}) 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}.$
- ▶ All the above can be extended to families of r-graphs $(n \gg r)$.

Proposition

Proposition

If \mathcal{G} is difference-isormorphic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2}/2}$.

 \triangleright All graphs in \mathcal{G} have the same number of edges, say m.

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$ has two parts: $G' \cap G$ and $G' \setminus G \cong G \setminus G'$.

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$ has two parts: $G' \cap G$ and $G' \setminus G (\cong G \setminus G')$.
 - ▶ Enumerate $G' \cap G$ (and also $G \setminus G'$) · · · · · 2^m .

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$ has two parts: $G' \cap G$ and $G' \setminus G \cong G \setminus G'$.
 - ▶ Enumerate $G' \cap G$ (and also $G \setminus G'$) · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \leftrightarrow G \setminus G' \cdots n!$.

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$ has two parts: $G' \cap G$ and $G' \setminus G \cong G \setminus G'$.
 - ▶ Enumerate $G' \cap G$ (and also $G \setminus G'$) · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \leftrightarrow G \setminus G' \cdots n!$.
- $|\mathcal{G}| \leq 2^m n!$.

Proposition

- \triangleright All graphs in \mathcal{G} have the same number of edges, say m.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$ has two parts: $G' \cap G$ and $G' \setminus G \cong G \setminus G'$.
 - ▶ Enumerate $G' \cap G$ (and also $G \setminus G'$) · · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \leftrightarrow G \setminus G' \cdots n!$.
- $|\mathcal{G}| \leq 2^m n!$. What if $m > \binom{n}{2}/2$?

Proposition

If \mathcal{G} is difference-isormorphic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2}/2}$.

▶ $|\mathcal{G}| \le 2^m n!$.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note that $\mathcal{G}' := \{G^c : G \in \mathcal{G}\}$ is also difference-isomorphic.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note that $\mathcal{G}' := \{G^c : G \in \mathcal{G}\}$ is also difference-isomorphic.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note that $\mathcal{G}' := \{G^c : G \in \mathcal{G}\}$ is also difference-isomorphic.
- ▶ We may assume $m \leq \frac{1}{2} \binom{n}{2}$.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note that $\mathcal{G}' := \{G^c : G \in \mathcal{G}\}$ is also difference-isomorphic.
- ▶ We may assume $m \leq \frac{1}{2} \binom{n}{2}$.
- $|\mathcal{G}| \le 2^{\binom{n}{2}/2} n! = 2^{(1+o(1))\binom{n}{2}/2}.$

Notation: $G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$.

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- $G_1 \stackrel{\varphi}{\cong} G_2 \Leftrightarrow$

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on C.

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- \triangleright $\tilde{\varphi}$ decomposes into cycles of edges of K_n .
- $G_1 \stackrel{\varphi}{\cong} G_2 \Leftrightarrow \varphi(G_1 \setminus G_2)|_C = (G_2 \setminus G_1)|_C \text{ for every cycle } C.$
 - ▶ In particular, G_1 , G_2 have the same number of edges on C.
 - ▶ More restrictions if |C| > 2.

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- \triangleright $\tilde{\varphi}$ decomposes into cycles of edges of K_n .
- $G_1 \stackrel{\varphi}{\cong} G_2 \Leftrightarrow \varphi(G_1 \setminus G_2)|_C = (G_2 \setminus G_1)|_C \text{ for every cycle } C.$
 - ▶ In particular, G_1 , G_2 have the same number of edges on C.
 - ▶ More restrictions if |C| > 2.
- ▶ It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.

Why are involutions special?

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- $G_1 \stackrel{\varphi}{\cong} G_2 \Leftrightarrow \varphi(G_1 \setminus G_2)|_C = (G_2 \setminus G_1)|_C \text{ for every cycle } C.$
 - ▶ In particular, G_1 , G_2 have the same number of edges on C.
 - ▶ More restrictions if |C| > 2.
- ▶ It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.

Why are involutions special?

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on C.
 - ▶ More restrictions if |C| > 2.
- ▶ It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.
- $\stackrel{\varphi}{\cong}$ is an equivalence relation when φ^2 is identity.

Why are involutions special?

Notation:
$$G_1 \stackrel{\varphi}{\cong} G_2 \iff \varphi(G_1 \setminus G_2) = G_2 \setminus G_1$$
.

- ▶ Every $\varphi \in S_n$ induces a $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- \triangleright $\tilde{\varphi}$ decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on C.
 - ▶ More restrictions if |C| > 2.
- ▶ It is "better" if $\tilde{\varphi}$ has more 1-cycles and 2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.
- $\triangleright \stackrel{\varphi}{\cong}$ is an equivalence relation when φ^2 is identity.
 - ▶ Many $G_1 \stackrel{\varphi}{\cong} G_2$ in $\mathcal{G} \Rightarrow \exists$ many graphs in \mathcal{G} forming a φ -clique.

$$\blacktriangleright \ N_{\varphi}(G) := \Big\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \Big\}.$$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

Lemma (technical)

• $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100}$ unless (φ, ψ) is "exceptional".

- $N_{\varphi}(G) := \Big\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \Big\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- ▶ Why do we need the first case?

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100}$ unless (φ, ψ) is "exceptional".
- ▶ Why do we need the first case? $\Rightarrow |S_n| = n! \gg 2^n$

- $N_{\varphi}(G) := \Big\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \Big\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- ▶ Why do we need the first case? $\Rightarrow |S_n| = n! \gg 2^n$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100}$ unless (φ, ψ) is "exceptional".
- ▶ Why do we need the first case? $\Rightarrow |S_n| = n! \gg 2^n$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- $e_{\psi}(N_{\omega}(G)) > M^2 \cdot 2^{-n/100}$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \stackrel{\varphi}{\cong} G' \right\}.$
- $\bullet e_{\psi}(N_{\varphi}(G)) := \# \Big\{ G_1, G_2 \in \mathcal{G} : G \stackrel{\varphi}{\cong} G_1, G \stackrel{\varphi}{\cong} G_1, G_1 \stackrel{\psi}{\cong} G_2 \Big\}.$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $ightharpoonup e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- ▶ Why do we need the first case? $\Rightarrow |S_n| = n! \gg 2^n$
- ▶ Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- ► $e_{\psi}(N_{\varphi}(G)) \ge M^2 \cdot 2^{-n/100}$ ⇒ $\exists \psi$ -clique of size at least $e_{\psi}(N_{\varphi}(G))/|N_{\varphi}(G)|$.

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or G contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or G contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - Use (1) when ψ is not "close" to φ and (2) otherwise.

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or G contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - Use (1) when ψ is not "close" to φ and (2) otherwise.
 - ▶ Get (α) unless (2) is violated for some exceptional (φ, ψ) .

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - Use (1) when ψ is not "close" to φ and (2) otherwise.
 - ▶ Get (α) unless (2) is violated for some exceptional (φ, ψ) .
 - ▶ In particular, ψ is an involution.

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - Use (1) when ψ is not "close" to φ and (2) otherwise.
 - ▶ Get (α) unless (2) is violated for some exceptional (φ, ψ) .
 - ▶ In particular, ψ is an involution.
 - ► There exists a large ψ -clique in $N_{\varphi}(G) \Rightarrow (\beta)$.

Lemma (without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi, \psi \text{ are "close"}.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100}$ unless (φ, ψ) is "exceptional".

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - Use (1) when ψ is not "close" to φ and (2) otherwise.
 - ▶ Get (α) unless (2) is violated for some exceptional (φ, ψ) .
 - ▶ In particular, ψ is an involution.
 - ▶ There exists a large ψ -clique in $N_{\varphi}(G) \Rightarrow (\beta)$.
 - Assume (α) happens $((\beta)$ is more complicated).

Condition: $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$.

▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.

- ▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.
 - $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$

- ▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.
 - $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$
 - $|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$

- ▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.
 - $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$
 - ▶ $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \le \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \stackrel{\psi}{\cong} G_2\}.$

- ▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.
 - $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$
 - ▶ $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \le \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \stackrel{\psi}{\cong} G_2\}.$
- For ψ "close" to φ , $\#\{G_1 \stackrel{\psi}{\cong} G_2\} \leq |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200}$.

- ▶ Fix any $G_0 \in \mathcal{G}$ and take $\varphi \in S_n$ that maximizes $|N_{\varphi}(G_0)|$.
 - $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$
 - ▶ $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \le \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \stackrel{\psi}{\cong} G_2\}.$
- ► For ψ "close" to φ , $\#\{G_1 \stackrel{\psi}{\cong} G_2\} \leq |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200}$.
- ▶ For other ψ , $\#\{G_1 \stackrel{\psi}{\cong} G_2\} \leq |\mathcal{G} \setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$.

Condition:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

Condition:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

Condition:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

$$|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} +$$

Condition:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_0)| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200}$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_0)| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_0)| \leq n! \cdot M \cdot n^{-10n}.$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_0)|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_0)|\cdot M\cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_0)| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_0)| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Longrightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200}$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_{0})|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})|\cdot M\cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Longrightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200} \leq M\cdot 2^{-n/400}$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Longrightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})|$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Longrightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n}$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_{0})|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})|\cdot M\cdot n^{-10n}$$

$$\Longrightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Longrightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200} \leq M\cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n!|N_{\varphi}(G_{0})| \leq (n!)^{2}\cdot M\cdot n^{-10n} \ll M\cdot 2^{-n/400}.$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\implies |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\implies |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n} \ll M \cdot 2^{-n/400}.$

$$\implies |\mathcal{G}| \leq M \cdot 2^{-n/400}!$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\implies |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\implies |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n} \ll M \cdot 2^{-n/400}.$

$$\implies |\mathcal{G}| \leq M \cdot 2^{-n/400}! \qquad \text{Nice!}$$

Further directions

Further directions

Any suggestions?

Questions? Comments?

The End