# Difference-isomorphic graph families 

Zhihan Jin<br>ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

$$
\text { May 7, } 2024
$$

## Set families with certain properties

## Theorem (Sperner 1928)

If $\mathcal{A}$ is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

## Set families with certain properties

## Theorem (Sperner 1928)

If $\mathcal{A}$ is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.


## Set families with certain properties

## Theorem (Sperner 1928)

If $\mathcal{A}$ is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.


## Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If $\mathcal{A}$ is a family of distinct $r$-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

## Set families with certain properties

## Theorem (Sperner 1928)

If $\mathcal{A}$ is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.


## Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If $\mathcal{A}$ is a family of distinct $r$-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

- The extremal example: $\{S \subseteq[n]: 1 \in S,|S|=r\}$.


## Set families with certain properties

## Theorem (Sperner 1928)

If $\mathcal{A}$ is a family of distinct subsets of $[n]$ s.t. no set is contained in the other, then $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

- The extremal example: $\{S \subseteq[n]:|S|=\lfloor n / 2\rfloor\}$.


## Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2 r$. If $\mathcal{A}$ is a family of distinct $r$-element subsets of $[n]$ s.t. each two subsets intersect, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$.

- The extremal example: $\{S \subseteq[n]: 1 \in S,|S|=r\}$.
- If $|\mathcal{A}| \approx\binom{n-1}{r-1}$, then $\mathcal{A}$ is "close" to the extremal example.


## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all $G$ containing a fixed triangle.


## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all $G$ containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.


## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- The extremal example: all $G$ containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to $K_{4}$.


## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2\left(\begin{array}{c}\binom{n}{2}-3 \text {. }\end{array}\right.$

- The extremal example: all $G$ containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to $K_{4}$.


## Conjecture (Ellis-Filmus-Friedgut 2012)

If $\mathcal{G}$ is a family of graphs on [n] s.t. any two graphs in $\mathcal{G}$ share a common $K_{t}$, then $|\mathcal{G}| \leq 2\binom{n}{2}-\binom{t}{2}$.

## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2{ }_{2}^{\binom{n}{2}-3}$.

- The extremal example: all $G$ containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to $K_{4}$.


## Conjecture (Ellis-Filmus-Friedgut 2012)

If $\mathcal{G}$ is a family of graphs on [n] s.t. any two graphs in $\mathcal{G}$ share a common $K_{t}$, then $|\mathcal{G}| \leq 2\binom{n}{2}-\binom{t}{2}$.

- $\triangle \Rightarrow C_{n}$,


## Graph families with intersection properties

## Conjecture (Simonovits-Sós 1976)

If $\mathcal{G}$ is a family of graphs on $[n]$ s.t. every two graphs in $\mathcal{G}$ share a common triangle, then $|\mathcal{G}| \leq 2{ }_{2}^{\binom{n}{2}-3}$.

- The extremal example: all $G$ containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- Berger and Zhao extended to $K_{4}$.


## Conjecture (Ellis-Filmus-Friedgut 2012)

If $\mathcal{G}$ is a family of graphs on [n] s.t. any two graphs in $\mathcal{G}$ share a common $K_{t}$, then $|\mathcal{G}| \leq 2\binom{n}{2}-\binom{t}{2}$.
$\checkmark \triangle \Rightarrow C_{n}, \quad|G| \leq 2^{\binom{n}{2}-n}$ by Leader, Ranđelović and Tan.

## Families with difference properties

## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if $\mathcal{A}$ is a family of $\delta$-proportion of matrices in $\{0, \ldots, k-1\}^{n \times n}$, then $\exists A_{0}, \ldots, A_{k-1} \in \mathcal{A}$ and $X \subseteq[n]$ s.t. $A_{i}[X \times X]$ is an all- $i$ matrix, $i=0,1, \ldots, k-1$, and everywhere else the same.

## Families with difference properties

## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if $\mathcal{A}$ is a family of $\delta$-proportion of matrices in $\{0, \ldots, k-1\}^{n \times n}$, then $\exists A_{0}, \ldots, A_{k-1} \in \mathcal{A}$ and $X \subseteq[n]$ s.t. $A_{i}[X \times X]$ is an all- $i$ matrix, $i=0,1, \ldots, k-1$, and everywhere else the same.

- An open case of the polynomial density Hales-Jewett problem.


## Families with difference properties

## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if $\mathcal{A}$ is a family of $\delta$ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_{0}, A_{1} \in \mathcal{A}$ and $X \subseteq[n]$ s.t. $A_{0}[X \times X]$ is all-zeros, $A_{1}[X \times X]$ is all-ones and everywhere the same.

- An open case of the polynomial density Hales-Jewett problem.
- Open when $k=2$.


## Families with difference properties

## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n \gg_{\delta} 1$, if $\mathcal{A}$ is a family of $\delta$ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_{0}, A_{1} \in \mathcal{A}$ and $X \subseteq[n]$ s.t. $A_{0}[X \times X]$ is all-zeros, $A_{1}[X \times X]$ is all-ones and everywhere the same.

- An open case of the polynomial density Hales-Jewett problem.
- Open when $k=2$.
- Variant: $A \in \mathcal{A}$ is symmetric with all-zeros diagonal.


## Families with difference properties

## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n>_{\delta} 1$, if $\mathcal{A}$ is a family of $\delta$ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_{0}, A_{1} \in \mathcal{A}$ and $X \subseteq[n]$ s.t. $A_{0}[X \times X]$ is all-zeros, $A_{1}[X \times X]$ is all-ones and everywhere the same.

- An open case of the polynomial density Hales-Jewett problem.
- Open when $k=2$.
- Variant: $A \in \mathcal{A}$ is symmetric with all-zeros diagonal.


## Conjecture (Gowers, 2009)

$\forall \delta>0 \forall n>_{\delta} 1$, if $\mathcal{G}$ is a family of graphs of $\delta$-proportion of graphs, then $\exists G_{1}, G_{2} \in \mathcal{G}$ s.t. $G_{1} \subset G_{2}$ and $G_{2} \backslash G_{1}$ is a clique.

## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H}$


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:
- $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:
- $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all non-Hamiltonian graphs by AGKMS 2023;


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:
- $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:
- $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;
- $\mathcal{H} \leftarrow$ all matchings of fixed size by Alon 2023+;


## Graph families with symmetric difference properties

Notation: $G_{1} \oplus G_{2}:=$ edges in one of $G_{1}$ and $G_{2}$.

- H: a prescribed family of graphs on $[n]$.
- $\forall G_{1}, G_{2} \in \mathcal{G} \rightarrow G_{1} \oplus G_{2} \notin \mathcal{H} \quad \Longrightarrow \quad|\mathcal{G}| \leq$ ?
- The "Graph-codes".
- Some known cases:
- $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all non-Hamiltonian graphs by AGKMS 2023;
- $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;
- $\mathcal{H} \leftarrow$ all matchings of fixed size by Alon 2023+;


## Question(Alon 2023+)

When $\mathcal{H}$ contains all the $K_{4}$ 's, does $|\mathcal{G}|=o\left(2^{\binom{n}{2}}\right)$ ?

## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023) How large can $|\mathcal{G}|$ be?

## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023) How large can $|\mathcal{G}|$ be?

- $\mathcal{G} \leftarrow$ all the perfect matchings.


## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

 How large can $|\mathcal{G}|$ be?- $\mathcal{G} \leftarrow$ all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.


## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- $\mathcal{G} \leftarrow$ all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.


## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- $\mathcal{G} \leftarrow$ all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.
- all $G \in \mathcal{G}$ are isomorphic (perfect matchings).


## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- $\mathcal{G} \leftarrow$ all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.
- all $G \in \mathcal{G}$ are isomorphic (perfect matchings).
- Does $G \in \mathcal{G}$ look alike?


## Difference-isomorphic graph families

## Definition

A family of graphs $\mathcal{G}$ on $[n]$ is called difference-isomorphic if $G_{1} \backslash G_{2} \cong G_{2} \backslash G_{1}$ for all $G_{1}, G_{2} \in \mathcal{G}$.

## Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- $\mathcal{G} \leftarrow$ all the perfect matchings.
- $G_{1} \backslash G_{2}$ and $G_{2} \backslash G_{1}$ are matchings of the same size.
- $|\mathcal{G}|=(n-1)!!=n^{\Theta(n)}$.
- all $G \in \mathcal{G}$ are isomorphic (perfect matchings).
- Does $G \in \mathcal{G}$ look alike?
- If so, maybe $|\mathcal{G}| \leq n^{O(n)}$ as there are $n!$ isomorphisms.


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\longleftrightarrow} v_{i}$.

## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\hookrightarrow} v_{i}$.


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\hookrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\longleftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$,


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\leftrightarrow}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\leftrightarrows} f\}$.
- For a pair $e \stackrel{\leftrightarrow}{\leftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\leftrightarrow}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\leftrightarrows} f\}$.
- For a pair $e \stackrel{\psi}{\leftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\longleftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.

$$
\begin{aligned}
& \left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset \text { or } \\
& \left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\{e\},\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\}
\end{aligned}
$$

## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or

$$
\begin{aligned}
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{e\}, & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f} & =\{f\} \text { or } \\
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{f\}, & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f} & =\{e\} .
\end{aligned}
$$

## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or

$$
\begin{array}{rlrl}
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{e\}, & & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\} \text { or } \\
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{f\}, & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\} .
\end{array}
$$

- So, $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or

$$
\begin{array}{rlrl}
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{e\}, & & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\} \text { or } \\
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{f\}, & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\} .
\end{array}
$$

- So, $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.
- $|\mathcal{G}|=2^{\#(e \stackrel{\psi}{\hookrightarrow} f)}=2^{k(k-1)}=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)}$


## A better example

Setting: $n=2 k, U=\left\{u_{1}, \ldots, u_{k}\right\}, V=\left\{v_{1}, \ldots, v_{k}\right\}, \quad u_{i} \stackrel{\psi}{\leftrightarrow} v_{i}$.


- $\mathcal{G} \leftarrow\{G: G$ has one of $\{e, f\} \forall e \stackrel{\psi}{\longleftrightarrow} f\}$.
- For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\left(\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}\right)=\left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}$.
- $\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f}=\emptyset,\left.\quad\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\emptyset$ or

$$
\begin{array}{rlrl}
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{e\}, & & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{f\} \text { or } \\
\left.\left(G_{1} \backslash G_{2}\right)\right|_{e, f} & =\{f\}, & \left.\left(G_{2} \backslash G_{1}\right)\right|_{e, f}=\{e\} .
\end{array}
$$

- So, $\psi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.
- $|\mathcal{G}|=2^{\#(e \stackrel{\psi}{\hookrightarrow} f)}=2^{k(k-1)}=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)} \gg n^{O(n)}$.


## Our results

## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

## Our results

## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large $n$, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- Not true when $n=2,3,4,5$ !


## Our results

## Theorem (Gishboliner-J.-Sudakov 23+) <br> For sufficiently large $n$, the largest difference-isomorphic family on $[n]$ has size $2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- Not true when $n=2,3,4,5$ !
- The construction works for all involutions, i.e. $\psi^{2}$ is identity.


## Our results

## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large $n$, the largest difference-isomorphic family on $[n]$ has size $2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- Not true when $n=2,3,4,5$ !
- The construction works for all involutions, i.e. $\psi^{2}$ is identity.


## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose $\mathcal{G}$ is difference-isomorphic on $[n]$.

- Either $\mathcal{G}$ is a subfamily of the extremal example;
- or $|\mathcal{G}|<\left(1-n^{100000 \sqrt{n}}\right) 2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.


## Our results

## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large $n$, the largest difference-isomorphic family on $[n]$ has size $2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.

- Not true when $n=2,3,4,5$ !
- The construction works for all involutions, i.e. $\psi^{2}$ is identity.


## Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose $\mathcal{G}$ is difference-isomorphic on $[n]$.

- Either $\mathcal{G}$ is a subfamily of the extremal example;
- or $|\mathcal{G}|<\left(1-n^{100000 \sqrt{n}}\right) 2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$.
- Everything can be extended to $r$-graphs $(n \gg r)$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- Every graph has $m$ edges.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}$ :


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+$


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G$


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (thus also $\left.G \backslash G^{\prime}\right) \cdots \cdots 2^{m}$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (thus also $\left.G \backslash G^{\prime}\right) \cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \stackrel{\varphi}{\leftrightarrows} G \backslash G^{\prime} \cdots \cdots n$ !.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (thus also $\left.G \backslash G^{\prime}\right) \cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \stackrel{\varphi}{\leftrightarrows} G \backslash G^{\prime} \cdots \cdots n$ !.
- $|\mathcal{G}| \leq 2^{m} n$ !.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.


- Every graph has $m$ edges.
- Fix any $G \in \mathcal{G}$.
- Every $G^{\prime} \in \mathcal{G}: G^{\prime} \cap G+G^{\prime} \backslash G\left(\cong G \backslash G^{\prime}\right)$.
- Enumerate $G^{\prime} \cap G$ (thus also $\left.G \backslash G^{\prime}\right) \cdots \cdots \cdot 2^{m}$.
- Enumerate the isomorphism $G^{\prime} \backslash G \stackrel{\varphi}{\leftrightarrows} G \backslash G^{\prime} \cdots \cdots \cdot n$ !.
- $|\mathcal{G}| \leq 2^{m} n$ !. What if $m>\binom{n}{2} / 2$ ?


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note: $\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note: $\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note: $\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.
- $m \leq \frac{1}{2}\binom{n}{2}$


## An approximate upper bound

## Proposition

If $\mathcal{G}$ is difference-isormophic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2} / 2}$.

- $|\mathcal{G}| \leq 2^{m} n!$.
- Note: $\left\{G^{c}: G \in \mathcal{G}\right\}$ is also difference-isomorphic.
- $G_{1}^{c} \backslash G_{2}^{c}=G_{2} \backslash G_{1} \cong G_{1} \backslash G_{2}=G_{2}^{c} \backslash G_{1}^{c}$.
- $m \leq \frac{1}{2}\binom{n}{2} \Longrightarrow|\mathcal{G}| \leq 2^{\binom{n}{2} / 2} n!=2^{(1+o(1))\binom{n}{2} / 2}$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow$


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.
- "Worse" if $|E|>2$.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.
- "Worse" if $|E|>2$.
- "Better" if $\tilde{\varphi}$ has more $1 / 2$-cycles.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.
- "Worse" if $|E|>2$.
- "Better" if $\tilde{\varphi}$ has more $1 / 2$-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. $\varphi^{2}$ is identity.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.
- "Worse" if $|E|>2$.
- "Better" if $\tilde{\varphi}$ has more $1 / 2$-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. $\varphi^{2}$ is identity.
- Crucial: $\xrightarrow{\varphi}$ is an equivalence relation if $\varphi^{2}$ is identity.


## Why are involutions special?

Notation: $G_{1} \xrightarrow{\varphi} G_{2}$ iff $\varphi\left(G_{1} \backslash G_{2}\right)=G_{2} \backslash G_{1}$.

- An $S_{n}$-edge-colored meta-graph with vertex set $\mathcal{G}$.
- $\varphi \in S_{n}$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u, v\})=\{\varphi(u), \varphi(v)\}$.
- $\tilde{\varphi}$ decomposes into cycles of edges of $K_{n}$.
- $\left.G_{1} \xrightarrow{\varphi} G_{2} \Leftrightarrow \varphi\left(G_{1} \backslash G_{2}\right)\right|_{E}=\left.\left(G_{2} \backslash G_{1}\right)\right|_{E}$ for every cycle $E$.
- In particular, $G_{1}, G_{2}$ have the same number of edges on $E$.
- "Worse" if $|E|>2$.
- "Better" if $\tilde{\varphi}$ has more $1 / 2$-cycles.
- The extremal case: $\tilde{\varphi}$ has only $1 / 2$-cycles, i.e. $\varphi^{2}$ is identity.
- Crucial: $\xrightarrow{\varphi}$ is an equivalence relation if $\varphi^{2}$ is identity.
- Many $G_{1} \xrightarrow{\varphi} G_{2}$ in $\mathcal{G} \Rightarrow \exists$ many $G \in \mathcal{G}$ forming a $\varphi$-clique.


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\}$.


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.


## A sketch of the upper bound proof

$$
\begin{aligned}
& N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad \text { Why: }|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right| . \\
& e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots \text { triangles }
\end{aligned}
$$

## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$. $e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\left.\frac{1}{2}\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".
- Exceptional: $\psi^{2}$ is identity, $\varphi \approx \psi, \ldots$


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".
- Exceptional: $\psi^{2}$ is identity, $\varphi \approx \psi, \ldots$
- Why bounding $e_{\psi}\left(N_{\varphi}(G)\right)$ ?


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".
- Exceptional: $\psi^{2}$ is identity, $\varphi \approx \psi, \ldots$
- Why bounding $e_{\psi}\left(N_{\varphi}(G)\right)$ ? $\Rightarrow\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".
- Exceptional: $\psi^{2}$ is identity, $\varphi \approx \psi, \ldots$
- Why bounding $e_{\psi}\left(N_{\varphi}(G)\right)$ ? $\Rightarrow\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Why the first case?


## A sketch of the upper bound proof

- $N_{\varphi}(G):=\left\{G^{\prime} \in \mathcal{G}: G \xrightarrow{\varphi} G^{\prime}\right\} . \quad$ Why: $|\mathcal{G}| \leq \sum_{\varphi}\left|N_{\varphi}(G)\right|$.
$e_{\psi}\left(N_{\varphi}(G)\right):=\#\left\{\left(G_{1}, G_{2}\right) \in N_{\varphi}(G): G_{1} \xrightarrow{\psi} G_{2}\right\} . \cdots$ triangles
- Let $M=2^{\frac{1}{2}\left(\binom{n}{2}-\left\lfloor\frac{n}{2}\right\rfloor\right)}$ be the extremal number.


## Lemma (technical)

- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
- $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".
- Exceptional: $\psi^{2}$ is identity, $\varphi \approx \psi, \ldots$
- Why bounding $e_{\psi}\left(N_{\varphi}(G)\right)$ ? $\Rightarrow\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Why the first case? $\Rightarrow\left|S_{n}\right|=n!\gg 2^{n}$


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## A sketch of the upper bound proof

> Lemma (technical, without proof)
> (1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
> (2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

## A sketch of the upper bound proof

> Lemma (technical, without proof)
> (1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
> (2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) for $\psi \not \approx \varphi$ and (2) for $\psi \approx \varphi$.


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) for $\psi \not \approx \varphi$ and (2) for $\psi \approx \varphi$.
- Get $(\alpha)$


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) for $\psi \not \approx \varphi$ and (2) for $\psi \approx \varphi$.
- Get $(\alpha)$ or $e_{\psi}\left(N_{\varphi}(G)\right) \geq M^{2} \cdot 2^{-n / 100}$ for exceptional $(\varphi, \psi)$.


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) for $\psi \not \approx \varphi$ and (2) for $\psi \approx \varphi$.
- Get $(\alpha)$ or $e_{\psi}\left(N_{\varphi}(G)\right) \geq M^{2} \cdot 2^{-n / 100}$ for exceptional $(\varphi, \psi)$.
- In particular, $\psi$ is an involution.


## A sketch of the upper bound proof

## Lemma (technical, without proof)

(1) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot n^{-10 n}$ unless $\varphi \approx \psi$.
(2) $e_{\psi}\left(N_{\varphi}(G)\right)<M^{2} \cdot 2^{-n / 100}$ unless $(\varphi, \psi)$ is "exceptional".

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- $\left|N_{\varphi}(G)\right|^{2} \leq \sum_{\psi} e_{\psi}\left(N_{\varphi}(G)\right)$.
- Use (1) for $\psi \not \approx \varphi$ and (2) for $\psi \approx \varphi$.
- Get $(\alpha)$ or $e_{\psi}\left(N_{\varphi}(G)\right) \geq M^{2} \cdot 2^{-n / 100}$ for exceptional $(\varphi, \psi)$.
- In particular, $\psi$ is an involution.
- $\exists$ large $\psi$-clique in $N_{\varphi}(G) \Rightarrow(\beta)$.


## A sketch of the upper bound proof

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

## A sketch of the upper bound proof

## Lemma

( $\alpha$ ) Either $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$;
$(\beta)$ or $\mathcal{G}$ contains a "large" $\psi$-clique for some involution $\psi$.

- Assume $(\alpha)$ happens; $(\beta)$ is more complicated.


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.

## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$.


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$. Take $\varphi \in S_{n}:|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$. Take $\varphi \in S_{n}:|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right|$


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$. Take $\varphi \in S_{n}:|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \xrightarrow{\psi} G_{2}\right\}$.


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$. Take $\varphi \in S_{n}:|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \xrightarrow{\psi} G_{2}\right\}$.
- For $\psi \approx \varphi, \#\left(G_{1} \xrightarrow{\psi} G_{2}\right) \leq\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}$;


## A sketch of the upper bound proof

Condition: $\left|N_{\varphi}(G)\right|<M \cdot 2^{-n / 200}$ for all $G \in \mathcal{G}, \varphi \in S_{n}$.


- Fix $G_{0} \in \mathcal{G}$. Take $\varphi \in S_{n}:|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.
- $\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq \sum_{\psi \in S_{n}} \#\left\{\left(G_{1}, G_{2}\right): G_{1} \xrightarrow{\psi} G_{2}\right\}$.
- For $\psi \approx \varphi, \#\left(G_{1} \xrightarrow{\psi} G_{2}\right) \leq\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}$;

For $\psi \not \approx \varphi, \#\left(G_{1} \xrightarrow{\psi} G_{2}\right) \leq\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n}$.

## A sketch of the upper bound proof

$$
\text { Recall: } M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100} .
$$

## A sketch of the upper bound proof

$\underline{\text { Recall: }} M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right|
$$

## A sketch of the upper bound proof

$\underline{\text { Recall: }} M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+
\end{aligned}
$$

## A sketch of the upper bound proof

$\underline{\text { Recall: }} M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n}
\end{aligned}
$$

## A sketch of the upper bound proof

$\underline{\text { Recall: }} M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200}
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} .
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
& \leq 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200}
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
& \leq 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400}
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\left.\frac{1}{2}\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right|
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
\leq & 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow \quad & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
\quad & \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n}
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
& \leq 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow \quad & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n} \ll M \cdot 2^{-n / 400} .
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
& \left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
& \leq 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
\Rightarrow & \left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
\Rightarrow \quad & |\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n}<M \cdot 2^{-n / 400} . \\
\Rightarrow & |\mathcal{G}| \leq M \cdot 2^{-n / 400}!
\end{aligned}
$$

## A sketch of the upper bound proof

Recall: $M=2^{\frac{1}{2}\left(\binom{n}{2}-\frac{n}{2}\right)},|\mathcal{G}| / n!\leq\left|N_{\varphi}\left(G_{0}\right)\right|<M \cdot 2^{-n / 100}$.


$$
\begin{aligned}
&\left|N_{\varphi}\left(G_{0}\right)\right|\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \\
& \leq 2^{o(n)} \cdot\left|N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot 2^{-n / 200}+n!\cdot\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \cdot M \cdot n^{-10 n} \\
& \Rightarrow\left|\mathcal{G} \backslash N_{\varphi}\left(G_{0}\right)\right| \leq 2^{o(n)} \cdot M \cdot 2^{-n / 200} \text { or }\left|N_{\varphi}\left(G_{0}\right)\right| \leq n!\cdot M \cdot n^{-10 n} . \\
& \Rightarrow \quad|\mathcal{G}| \leq M \cdot 2^{-n / 200}+2^{o(n)} \cdot M \cdot 2^{-n / 200} \leq M \cdot 2^{-n / 400} \\
& \text { or }|\mathcal{G}| \leq n!\left|N_{\varphi}\left(G_{0}\right)\right| \leq(n!)^{2} \cdot M \cdot n^{-10 n} \ll M \cdot 2^{-n / 400} . \\
& \Rightarrow|\mathcal{G}| \leq M \cdot 2^{-n / 400}!\quad \text { Nice! }
\end{aligned}
$$

## Further directions

## Further directions

# Any suggestions? 

## The End

## Questions? Comments?

