

Zhihan Jin

ETH Zürich

Joint work with Lior Gishboliner and Benny Sudakov

May 7, 2024

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: ${S \subseteq [n] : |S| = \lfloor n/2 \rfloor}$.

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

Theorem (Sperner 1928)

If \mathcal{A} is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

▶ The extremal example: $\{S \subseteq [n] : 1 \in S, |S| = r\}$.

Theorem (Sperner 1928)

If A is a family of distinct subsets of [n] s.t. no set is contained in the other, then $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

▶ The extremal example: $\{S \subseteq [n] : |S| = \lfloor n/2 \rfloor \}$.

Theorem (Erdős-Ko-Rado 1938)

Let $n \geq 2r$. If \mathcal{A} is a family of distinct r-element subsets of [n] s.t. each two subsets intersect, then $|\mathcal{A}| \leq {n-1 \choose r-1}$.

- ▶ The extremal example: $\{S \subseteq [n] : 1 \in S, |S| = r\}$.
- ▶ If $|\mathcal{A}| \approx \binom{n-1}{r-1}$, then \mathcal{A} is "close" to the extremal example.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

ightharpoonup The extremal example: all G containing a fixed triangle.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- ▶ Confirmed by Ellis, Filmus and Friedgut in 2012.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- \triangleright Berger and Zhao extended to K_4 .

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- \triangleright Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

 $ightharpoonup \triangle \Rightarrow C_n$

Conjecture (Simonovits-Sós 1976)

If \mathcal{G} is a family of graphs on [n] s.t. every two graphs in \mathcal{G} share a common triangle, then $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$.

- \triangleright The extremal example: all G containing a fixed triangle.
- Confirmed by Ellis, Filmus and Friedgut in 2012.
- ▶ Berger and Zhao extended to K_4 .

Conjecture (Ellis-Filmus-Friedgut 2012)

If \mathcal{G} is a family of graphs on [n] s.t. any two graphs in \mathcal{G} share a common K_t , then $|\mathcal{G}| \leq 2^{\binom{n}{2} - \binom{t}{2}}$.

 $ightharpoonup \triangle \Rightarrow C_n, \quad |G| \leq 2^{\binom{n}{2}-n}$ by Leader, Ranđelović and Tan.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of δ -proportion of matrices in $\{0,\ldots,k-1\}^{n\times n}$, then $\exists A_0,\ldots,A_{k-1}\in\mathcal{A} \text{ and } X\subseteq [n] \text{ s.t.}$ $A_i[X\times X]$ is an all-i matrix, $i=0,1,\ldots,k-1$, and everywhere else the same.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of δ -proportion of matrices in $\{0,\ldots,k-1\}^{n\times n}$, then $\exists A_0,\ldots,A_{k-1}\in\mathcal{A} \text{ and } X\subseteq [n] \text{ s.t.}$ $A_i[X\times X]$ is an all-i matrix, $i=0,1,\ldots,k-1$, and everywhere else the same.

▶ An open case of the polynomial density Hales-Jewett problem.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of δ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_0, A_1 \in \mathcal{A}$ and $X \subseteq [n]$ s.t. $A_0[X \times X]$ is all-zeros, $A_1[X \times X]$ is all-ones and everywhere the same.

- ▶ An open case of the polynomial density Hales-Jewett problem.
- ightharpoonup Open when k=2.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of δ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_0, A_1 \in \mathcal{A}$ and $X \subseteq [n]$ s.t. $A_0[X \times X]$ is all-zeros, $A_1[X \times X]$ is all-ones and everywhere the same.

- ▶ An open case of the polynomial density Hales-Jewett problem.
- \triangleright Open when k=2.
- ▶ Variant: $A \in \mathcal{A}$ is symmetric with all-zeros diagonal.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{A} is a family of δ proportion of matrices in $\{0,1\}^{n \times n}$, then $\exists A_0, A_1 \in \mathcal{A} \text{ and } X \subseteq [n] \text{ s.t. } A_0[X \times X] \text{ is all-zeros, } A_1[X \times X] \text{ is all-ones and everywhere the same.}$

- ▶ An open case of the polynomial density Hales-Jewett problem.
- ightharpoonup Open when k=2.
- ▶ Variant: $A \in \mathcal{A}$ is symmetric with all-zeros diagonal.

Conjecture (Gowers, 2009)

 $\forall \delta > 0 \ \forall n \gg_{\delta} 1$, if \mathcal{G} is a family of graphs of δ -proportion of graphs, then $\exists G_1, G_2 \in \mathcal{G}$ s.t. $G_1 \subset G_2$ and $G_2 \setminus G_1$ is a clique.

Notation: $G_1 \oplus G_2 := \text{edges in one of } G_1 \text{ and } G_2.$

 $ightharpoonup \mathcal{H}$: a prescribed family of graphs on [n].

- $ightharpoonup \mathcal{H}$: a prescribed family of graphs on [n].
- $\blacktriangleright \ \forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H}$

- $ightharpoonup \mathcal{H}$: a prescribed family of graphs on [n].
- $\blacktriangleright \ \forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \quad \Longrightarrow \quad |\mathcal{G}| \leq ?$

- $ightharpoonup \mathcal{H}$: a prescribed family of graphs on [n].
- $\blacktriangleright \ \forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \quad \Longrightarrow \quad |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- - ► The "Graph-codes".
- ➤ Some known cases:

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- $\forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \implies |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".
- ➤ Some known cases:
 - ▶ \mathcal{H} ← all disconnected graphs by AGKMS 2023;

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- $\forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \implies |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".
- ► Some known cases:
 - \triangleright $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
 - ▶ \mathcal{H} ← all non-Hamiltonian graphs by AGKMS 2023;

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- $\forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \implies |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".
- ➤ Some known cases:
 - \triangleright $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
 - ▶ \mathcal{H} ← all non-Hamiltonian graphs by AGKMS 2023;
 - \triangleright $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- $\blacktriangleright \ \forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \quad \Longrightarrow \quad |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".
- ► Some known cases:
 - \triangleright $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
 - ▶ \mathcal{H} ← all non-Hamiltonian graphs by AGKMS 2023;
 - \triangleright $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;
 - \triangleright $\mathcal{H} \leftarrow$ all matchings of fixed size by Alon 2023+;.

Notation: $G_1 \oplus G_2 := \text{edges in one of } G_1 \text{ and } G_2.$

- \triangleright \mathcal{H} : a prescribed family of graphs on [n].
- $\forall G_1, G_2 \in \mathcal{G} \to G_1 \oplus G_2 \notin \mathcal{H} \implies |\mathcal{G}| \leq ?$
 - ► The "Graph-codes".
- ➤ Some known cases:
 - \triangleright $\mathcal{H} \leftarrow$ all disconnected graphs by AGKMS 2023;
 - ▶ \mathcal{H} ← all non-Hamiltonian graphs by AGKMS 2023;
 - \triangleright $\mathcal{H} \leftarrow$ all stars of fixed size by Alon 2023+;
 - \triangleright $\mathcal{H} \leftarrow$ all matchings of fixed size by Alon 2023+;.

Question(Alon 2023+)

When \mathcal{H} contains all the K_4 's, does $|\mathcal{G}| = o(2^{\binom{n}{2}})$?

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

 \triangleright $\mathcal{G} \leftarrow$ all the perfect matchings.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- \triangleright $\mathcal{G} \leftarrow$ all the perfect matchings.
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- $\triangleright \mathcal{G} \leftarrow \text{all the perfect matchings.}$
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question(Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- $\triangleright \mathcal{G} \leftarrow \text{all the perfect matchings.}$
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$
 - ▶ all $G \in \mathcal{G}$ are isomorphic (perfect matchings).

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

- $\triangleright \mathcal{G} \leftarrow \text{all the perfect matchings.}$
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$
 - ▶ all $G \in \mathcal{G}$ are isomorphic (perfect matchings).
- ▶ Does $G \in \mathcal{G}$ look alike?

Difference-isomorphic graph families

Definition

A family of graphs \mathcal{G} on [n] is called difference-isomorphic if $G_1 \setminus G_2 \cong G_2 \setminus G_1$ for all $G_1, G_2 \in \mathcal{G}$.

Question (Alon-Gujgiczer-Körner-Milojević-Simonyi 2023)

How large can $|\mathcal{G}|$ be?

- $\triangleright \mathcal{G} \leftarrow \text{all the perfect matchings.}$
 - ▶ $G_1 \setminus G_2$ and $G_2 \setminus G_1$ are matchings of the same size.
 - $|\mathcal{G}| = (n-1)!! = n^{\Theta(n)}.$
 - ▶ all $G \in \mathcal{G}$ are isomorphic (perfect matchings).
- ▶ Does $G \in \mathcal{G}$ look alike?
 - ▶ If so, maybe $|\mathcal{G}| \leq n^{O(n)}$ as there are n! isomorphisms.

Setting:
$$n = 2k$$
, $U = \{u_1, \dots, u_k\}$, $V = \{v_1, \dots, v_k\}$, $u_i \stackrel{\psi}{\longleftrightarrow} v_i$.

Setting:
$$n = 2k$$
, $U = \{u_1, \dots, u_k\}$, $V = \{v_1, \dots, v_k\}$, $u_i \stackrel{\psi}{\longleftrightarrow} v_i$.

▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$

Setting:
$$n = 2k$$
, $U = \{u_1, \ldots, u_k\}$, $V = \{v_1, \ldots, v_k\}$, $u_i \stackrel{\psi}{\longleftrightarrow} v_i$.

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- $\blacktriangleright \text{ For a pair } e \stackrel{\psi}{\longleftrightarrow} f,$

Setting:
$$n = 2k$$
, $U = \{u_1, \dots, u_k\}$, $V = \{v_1, \dots, v_k\}$, $u_i \stackrel{\psi}{\longleftrightarrow} v_i$.

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.
 - $\begin{array}{c|c} \bullet & (G_1 \setminus G_2)\big|_{e,f} = \emptyset, & (G_2 \setminus G_1)\big|_{e,f} = \emptyset \text{ or } \\ & (G_1 \setminus G_2)\big|_{e,f} = \{e\}, & (G_2 \setminus G_1)\big|_{e,f} = \{f\} \end{array}$

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.
 - $\begin{array}{c|c} \bullet & (G_1 \setminus G_2)\big|_{e,f} = \emptyset , & (G_2 \setminus G_1)\big|_{e,f} = \emptyset \text{ or } \\ & (G_1 \setminus G_2)\big|_{e,f} = \{e\}, & (G_2 \setminus G_1)\big|_{e,f} = \{f\} \text{ or } \\ & (G_1 \setminus G_2)\big|_{e,f} = \{f\}, & (G_2 \setminus G_1)\big|_{e,f} = \{e\}. \end{array}$

Setting:
$$n = 2k$$
, $U = \{u_1, \dots, u_k\}$, $V = \{v_1, \dots, v_k\}$, $u_i \stackrel{\psi}{\longleftrightarrow} v_i$.

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.
 - $\begin{array}{c|c} (G_1 \setminus G_2)\big|_{e,f} = \emptyset , & (G_2 \setminus G_1)\big|_{e,f} = \emptyset \text{ or } \\ (G_1 \setminus G_2)\big|_{e,f} = \{e\}, & (G_2 \setminus G_1)\big|_{e,f} = \{f\} \text{ or } \\ (G_1 \setminus G_2)\big|_{e,f} = \{f\}, & (G_2 \setminus G_1)\big|_{e,f} = \{e\}. \end{array}$
- $\triangleright \text{ So, } \psi(G_1 \setminus G_2) = G_2 \setminus G_1.$

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.
 - $\begin{array}{c|c} \left| \left(G_1 \setminus G_2 \right) \right|_{e,f} = \emptyset, & \left(G_2 \setminus G_1 \right) \right|_{e,f} = \emptyset \text{ or } \\ \left(\left(G_1 \setminus G_2 \right) \right|_{e,f} = \{e\}, & \left(\left(G_2 \setminus G_1 \right) \right|_{e,f} = \{f\} \text{ or } \\ \left(\left(G_1 \setminus G_2 \right) \right|_{e,f} = \{f\}, & \left(\left(G_2 \setminus G_1 \right) \right|_{e,f} = \{e\}. \end{array}$
- $|\mathcal{G}| = 2^{\#(e \stackrel{\psi}{\longleftrightarrow} f)} = 2^{k(k-1)} = 2^{\frac{1}{2}(\binom{n}{2} \frac{n}{2})}$

- ▶ $\mathcal{G} \leftarrow \{G : G \text{ has one of } \{e, f\} \ \forall e \stackrel{\psi}{\longleftrightarrow} f\}.$
- ▶ For a pair $e \stackrel{\psi}{\longleftrightarrow} f$, we have $\psi\Big((G_1 \setminus G_2)\big|_{e,f}\Big) = (G_2 \setminus G_1)\big|_{e,f}$.
 - ▶ $(G_1 \setminus G_2)|_{e,f} = \emptyset$, $(G_2 \setminus G_1)|_{e,f} = \emptyset$ or $(G_1 \setminus G_2)|_{e,f} = \{e\}$, $(G_2 \setminus G_1)|_{e,f} = \{f\}$ or $(G_1 \setminus G_2)|_{e,f} = \{f\}$, $(G_2 \setminus G_1)|_{e,f} = \{e\}$.
- ightharpoonup So, $\psi(G_1 \setminus G_2) = G_2 \setminus G_1$.
- $|\mathcal{G}| = 2^{\#(e \stackrel{\psi}{\longleftrightarrow} f)} = 2^{k(k-1)} = 2^{\frac{1}{2}(\binom{n}{2} \frac{n}{2})} \gg n^{O(n)}.$

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

▶ Not true when n = 2, 3, 4, 5!

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ Not true when n = 2, 3, 4, 5!
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ Not true when n = 2, 3, 4, 5!
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on [n].

- \triangleright Either \mathcal{G} is a subfamily of the extremal example;
- $ightharpoonup or |\mathcal{G}| < (1 n^{100000\sqrt{n}}) 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}.$

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, the largest difference-isomorphic family on [n] has size $2^{\frac{1}{2}(\binom{n}{2}-\lfloor \frac{n}{2}\rfloor)}$.

- ▶ Not true when n = 2, 3, 4, 5!
- ▶ The construction works for all involutions, i.e. ψ^2 is identity.

Theorem (Gishboliner-J.-Sudakov 23+)

For sufficiently large n, suppose \mathcal{G} is difference-isomorphic on [n].

- \triangleright Either \mathcal{G} is a subfamily of the extremal example;
- $ightharpoonup or |\mathcal{G}| < (1 n^{100000\sqrt{n}}) 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}.$
- ▶ Everything can be extended to r-graphs $(n \gg r)$.

Proposition

Proposition

If \mathcal{G} is difference-isormorphic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2}/2}$.

 \triangleright Every graph has m edges.

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$:

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G +$

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G$

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G \ (\cong G \setminus G')$.

Proposition

- \triangleright Every graph has m edges.
- ▶ Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G \ (\cong G \setminus G')$.
 - ▶ Enumerate $G' \cap G$ (thus also $G \setminus G'$) · · · · · · 2^m .

Proposition

- \triangleright Every graph has m edges.
- Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G \ (\cong G \setminus G')$.
 - ▶ Enumerate $G' \cap G$ (thus also $G \setminus G'$) · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \stackrel{\varphi}{\longleftrightarrow} G \setminus G' \cdots n!$.

Proposition

- \triangleright Every graph has m edges.
- Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G \ (\cong G \setminus G')$.
 - ▶ Enumerate $G' \cap G$ (thus also $G \setminus G'$) · · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \stackrel{\varphi}{\leftrightarrow} G \setminus G' \cdots n!$.
- ▶ $|\mathcal{G}| \le 2^m n!$.

Proposition

- \triangleright Every graph has m edges.
- Fix any $G \in \mathcal{G}$.
 - ▶ Every $G' \in \mathcal{G}$: $G' \cap G + G' \setminus G \ (\cong G \setminus G')$.
 - ▶ Enumerate $G' \cap G$ (thus also $G \setminus G'$) · · · · · · 2^m .
 - ▶ Enumerate the isomorphism $G' \setminus G \stackrel{\varphi}{\leftrightarrow} G \setminus G' \cdots n!$.
- ▶ $|\mathcal{G}| \le 2^m n!$. What if $m > \binom{n}{2}/2$?

Proposition

If \mathcal{G} is difference-isormorphic, then $|\mathcal{G}| \leq 2^{(1+o(1))\binom{n}{2}/2}$.

▶ $|\mathcal{G}| \le 2^m n!$.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note: $\{G^c: G \in \mathcal{G}\}$ is also difference-isomorphic.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note: $\{G^c: G \in \mathcal{G}\}$ is also difference-isomorphic.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note: $\{G^c : G \in \mathcal{G}\}$ is also difference-isomorphic.

Proposition

- ▶ $|\mathcal{G}| \le 2^m n!$.
- ▶ Note: $\{G^c: G \in \mathcal{G}\}$ is also difference-isomorphic.
- $m \leq \frac{1}{2} \binom{n}{2} \Longrightarrow |\mathcal{G}| \leq 2^{\binom{n}{2}/2} n! = 2^{(1+o(1))\binom{n}{2}/2}.$

Why are involutions special?

Notation: $G_1 \stackrel{\varphi}{\to} G_2$ iff $\varphi(G_1 \setminus G_2) = G_2 \setminus G_1$.

Why are involutions special?

Notation:
$$G_1 \stackrel{\varphi}{\to} G_2$$
 iff $\varphi(G_1 \setminus G_2) = G_2 \setminus G_1$.

▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .

Why are involutions special?

Notation: $G_1 \stackrel{\varphi}{\to} G_2$ iff $\varphi(G_1 \setminus G_2) = G_2 \setminus G_1$.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.
 - "Worse" if |E| > 2.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.
 - "Worse" if |E| > 2.
- ▶ "Better" if $\tilde{\varphi}$ has more 1/2-cycles.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.
 - "Worse" if |E| > 2.
- ▶ "Better" if $\tilde{\varphi}$ has more 1/2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.
 - "Worse" if |E| > 2.
- ▶ "Better" if $\tilde{\varphi}$ has more 1/2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.
- ightharpoonup Crucial: $\stackrel{\varphi}{\to}$ is an equivalence relation if φ^2 is identity.

- ▶ An S_n -edge-colored meta-graph with vertex set \mathcal{G} .
- $\varphi \in S_n$ induces $\tilde{\varphi} \in S_{\binom{[n]}{2}}$ by $\tilde{\varphi}(\{u,v\}) = \{\varphi(u), \varphi(v)\}.$
- ightharpoonup $\tilde{\varphi}$ decomposes into cycles of edges of K_n .
- - ▶ In particular, G_1 , G_2 have the same number of edges on E.
 - "Worse" if |E| > 2.
- ▶ "Better" if $\tilde{\varphi}$ has more 1/2-cycles.
 - ▶ The extremal case: $\tilde{\varphi}$ has only 1/2-cycles, i.e. φ^2 is identity.
- ightharpoonup Crucial: $\stackrel{\varphi}{\to}$ is an equivalence relation if φ^2 is identity.
 - ▶ Many $G_1 \stackrel{\varphi}{\to} G_2$ in $\mathcal{G} \Rightarrow \exists$ many $G \in \mathcal{G}$ forming a φ -clique.

 $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

Lemma (technical)

• $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100}$ unless (φ, ψ) is "exceptional".

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- ▶ Why bounding $e_{\psi}(N_{\varphi}(G))$?

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- ▶ Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- ▶ Why bounding $e_{\psi}(N_{\varphi}(G))$? $\Rightarrow |N_{\varphi}(G)|^2 \leq \sum_{\psi} e_{\psi}(N_{\varphi}(G))$.

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- ▶ Why bounding $e_{\psi}(N_{\varphi}(G))$? $\Rightarrow |N_{\varphi}(G)|^2 \leq \sum_{\psi} e_{\psi}(N_{\varphi}(G))$.
- ▶ Why the first case?

- $N_{\varphi}(G) := \left\{ G' \in \mathcal{G} : G \xrightarrow{\varphi} G' \right\}. \quad \text{Why: } |\mathcal{G}| \leq \sum_{\varphi} |N_{\varphi}(G)|.$ $e_{\psi}(N_{\varphi}(G)) := \# \left\{ (G_1, G_2) \in N_{\varphi}(G) : G_1 \xrightarrow{\psi} G_2 \right\}. \quad \text{triangles}$
- Let $M = 2^{\frac{1}{2}(\binom{n}{2} \lfloor \frac{n}{2} \rfloor)}$ be the extremal number.

- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$
- Exceptional: ψ^2 is identity, $\varphi \approx \psi$, ...
- ▶ Why bounding $e_{\psi}(N_{\varphi}(G))$? $\Rightarrow |N_{\varphi}(G)|^2 \leq \sum_{\psi} e_{\psi}(N_{\varphi}(G))$.
- ▶ Why the first case? $\Rightarrow |S_n| = n! \gg 2^n$

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (a) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (a) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $\blacktriangleright |N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (a) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - ▶ Use (1) for $\psi \not\approx \varphi$ and (2) for $\psi \approx \varphi$.

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - ▶ Use (1) for $\psi \not\approx \varphi$ and (2) for $\psi \approx \varphi$.
 - ightharpoonup Get (α)

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - ▶ Use (1) for $\psi \not\approx \varphi$ and (2) for $\psi \approx \varphi$.
 - ▶ Get (α) or $e_{\psi}(N_{\varphi}(G)) \geq M^2 \cdot 2^{-n/100}$ for exceptional (φ, ψ) .

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (a) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $\blacktriangleright |N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - ▶ Use (1) for $\psi \not\approx \varphi$ and (2) for $\psi \approx \varphi$.
 - ▶ Get (α) or $e_{\psi}(N_{\varphi}(G)) \geq M^2 \cdot 2^{-n/100}$ for exceptional (φ, ψ) .
 - \triangleright In particular, ψ is an involution.

Lemma (technical, without proof)

- (1) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot n^{-10n} \text{ unless } \varphi \approx \psi.$
- (2) $e_{\psi}(N_{\varphi}(G)) < M^2 \cdot 2^{-n/100} \text{ unless } (\varphi, \psi) \text{ is "exceptional"}.$

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - $|N_{\varphi}(G)|^2 \le \sum_{\psi} e_{\psi}(N_{\varphi}(G)).$
 - ▶ Use (1) for $\psi \not\approx \varphi$ and (2) for $\psi \approx \varphi$.
 - ▶ Get (α) or $e_{\psi}(N_{\varphi}(G)) \geq M^2 \cdot 2^{-n/100}$ for exceptional (φ, ψ) .
 - ightharpoonup In particular, ψ is an involution.
 - ▶ \exists large ψ -clique in $N_{\omega}(G) \Rightarrow (\beta)$.

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ -clique for some involution ψ .

- (α) Either $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$;
- (β) or \mathcal{G} contains a "large" ψ-clique for some involution ψ.
 - \blacktriangleright Assume (α) happens; (β) is more complicated.

Condition: $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$.

▶ Fix $G_0 \in \mathcal{G}$.

Condition: $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$.

▶ Fix $G_0 \in \mathcal{G}$. Take $\varphi \in S_n$: $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}$.

- ▶ Fix $G_0 \in \mathcal{G}$. Take $\varphi \in S_n$: $|\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}$.
 - $|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$

- ▶ Fix $G_0 \in \mathcal{G}$. Take $\varphi \in S_n$: $|\mathcal{G}|/n! \leq |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}$.
 - ► $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \le \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \xrightarrow{\psi} G_2\}.$

- ▶ Fix $G_0 \in \mathcal{G}$. Take $\varphi \in S_n$: $|\mathcal{G}|/n! \leq |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}$.
 - ► $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \le \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \xrightarrow{\psi} G_2\}.$
- For $\psi \approx \varphi$, $\#(G_1 \xrightarrow{\psi} G_2) \leq |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200}$;

Condition: $|N_{\varphi}(G)| < M \cdot 2^{-n/200}$ for all $G \in \mathcal{G}, \varphi \in S_n$.

- ▶ Fix $G_0 \in \mathcal{G}$. Take $\varphi \in S_n$: $|\mathcal{G}|/n! \leq |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}$.
 - ▶ $|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)| \leq \sum_{\psi \in S_n} \#\{(G_1, G_2) : G_1 \xrightarrow{\psi} G_2\}.$
- ► For $\psi \approx \varphi$, $\#(G_1 \xrightarrow{\psi} G_2) \leq |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200}$; For $\psi \not\approx \varphi$, $\#(G_1 \xrightarrow{\psi} G_2) \leq |\mathcal{G} \setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$.

Recall:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

Recall:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

Recall:
$$M = 2^{\frac{1}{2}(\binom{n}{2} - \frac{n}{2})}, |\mathcal{G}|/n! \le |N_{\varphi}(G_0)| < M \cdot 2^{-n/100}.$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_0)|\cdot M\cdot 2^{-n/200} +$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$$

$$|N_{\varphi}(G_0)||\mathcal{G} \setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_0)| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G} \setminus N_{\varphi}(G_0)| \cdot M \cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G} \setminus N_{\varphi}(G_0)| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200}$$

$$|N_{\varphi}(G_0)||\mathcal{G}\setminus N_{\varphi}(G_0)|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_0)|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_0)|\cdot M\cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_0)| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_0)| \leq n!\cdot M\cdot n^{-10n}.$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_{0})|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})|\cdot M\cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200}$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_{0})|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})|\cdot M\cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200} \leq M\cdot 2^{-n/400}$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})|$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n}$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)}\cdot |N_{\varphi}(G_{0})|\cdot M\cdot 2^{-n/200} + n!\cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})|\cdot M\cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)}\cdot M\cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n!\cdot M\cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M\cdot 2^{-n/200} + 2^{o(n)}\cdot M\cdot 2^{-n/200} \leq M\cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n!|N_{\varphi}(G_{0})| \leq (n!)^{2}\cdot M\cdot n^{-10n} \ll M\cdot 2^{-n/400}.$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n} \ll M \cdot 2^{-n/400}.$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/400}!$$

$$|N_{\varphi}(G_{0})||\mathcal{G}\setminus N_{\varphi}(G_{0})|$$

$$\leq 2^{o(n)} \cdot |N_{\varphi}(G_{0})| \cdot M \cdot 2^{-n/200} + n! \cdot |\mathcal{G}\setminus N_{\varphi}(G_{0})| \cdot M \cdot n^{-10n}$$

$$\Rightarrow |\mathcal{G}\setminus N_{\varphi}(G_{0})| \leq 2^{o(n)} \cdot M \cdot 2^{-n/200} \text{ or } |N_{\varphi}(G_{0})| \leq n! \cdot M \cdot n^{-10n}.$$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/200} + 2^{o(n)} \cdot M \cdot 2^{-n/200} \leq M \cdot 2^{-n/400}$$
or $|\mathcal{G}| \leq n! |N_{\varphi}(G_{0})| \leq (n!)^{2} \cdot M \cdot n^{-10n} \ll M \cdot 2^{-n/400}.$

$$\Rightarrow |\mathcal{G}| \leq M \cdot 2^{-n/400}! \qquad \text{Nice!}$$

Further directions

Further directions

Any suggestions?

Questions? Comments?

The End