Semi-algebraic and Semi-linear Ramsey Numbers

Zhihan Jin 1 István Tomon ²

¹ETH

²Umeå University

August 28th, 2023

Zhihan Jin, Istv´an Tomon (ETH, Ume˚a) [Semi-algebraic Ramsey Numbers](#page-41-0) EURO2023 1 / 12

 298

母 > + ヨ

4 D F

Ramsey Numbers for Graphs

Definition

 $R(s, n) :=$ the smallest *N* s.t. any graph on *N* vertices contains a clique of size *s* or an independent set of size *n*.

 Ω

母 > イヨ > イヨ >

Ramsey Numbers for Graphs

Definition

 $R(s, n) :=$ the smallest N s.t. any graph on N vertices contains a clique of size *s* or an independent set of size *n*.

Theorem (Erd˝os and Szekeres '35, Erd˝os '47)

 $R(n, n) = 2^{\Theta(n)}$, $R(s, n) = n^{\Theta(s)}$.

 Ω

何) (三) (三)

Definition

 $R_r(s, n) :=$ the smallest *N* s.t. any *r*-uniform hypergraph on *N* vertices contains a clique of size *s* or an independent set of size *n*.

 Ω

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Definition

 $R_r(s, n) :=$ the smallest N s.t. any *r*-uniform hypergraph on N vertices contains a clique of size *s* or an independent set of size *n*.

Theorem (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

 $2^{n^2} < R_3(n, n) < 2^{2^{\mathcal{O}(n)}}$.

Definition

 $R_r(s, n) :=$ the smallest N s.t. any *r*-uniform hypergraph on N vertices contains a clique of size *s* or an independent set of size *n*.

Theorem (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

 $2^{n^2} < R_3(n, n) < 2^{2^{\mathcal{O}(n)}}$.

• **The exponential gap remains till now!**

 Ω

何) (三) (三)

Lemma (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

 $R_r(\mathbf{s}, n) \approx 2^{R_{r-1}(\mathbf{s}, n)}$ when $r \geq 4$.

• In fact, the upper bound holds also for $r = 3$.

Lemma (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

 $R_r(\mathbf{s}, n) \approx 2^{R_{r-1}(\mathbf{s}, n)}$ when $r \geq 4$.

• In fact, the upper bound holds also for $r = 3$.

Corollary (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

$$
\mathrm{tw}_{r-1}(\Omega(n^2)) < R_r(n,n) < \mathrm{tw}_r(\mathcal{O}(n))\text{, where } \mathrm{tw}_r(n) = \underbrace{2^{2\cdot \frac{2^{n}}{r}}}_{r \text{ times}}.
$$

•
$$
\text{tw}_1(n) = n, \text{tw}_2(n) = 2^n, \text{tw}_3(n) = 2^{2^n}.
$$

 200

イロト イ押ト イヨト イヨト

Lemma (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

 $R_r(\mathbf{s}, n) \approx 2^{R_{r-1}(\mathbf{s}, n)}$ when $r \geq 4$.

• In fact, the upper bound holds also for $r = 3$.

Corollary (Erd˝os and Rado '52, Erd˝os, Hajnal and Rado '65)

$$
\mathrm{tw}_{r-1}(\Omega(n^2)) < R_r(n,n) < \mathrm{tw}_r(\mathcal{O}(n))\text{, where } \mathrm{tw}_r(n) = 2^{\sum_{r \text{ times}}^{2^n}}.
$$

- $\tan (n) = n, \tan (n) = 2^n, \tan (n) = 2^{2^n}.$
- The **critical case** is when $r = 3$, i.e. 3-uniform hypergraphs.

 200

K ロ ト K 伺 ト K ヨ ト K ヨ ト

• What if we focus on graphs defined by geometry?

 $\leftarrow \equiv +$

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (d, D, m) if

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (*d*, *D*, *m*) if

• every vertex *v* ∈ *V*(H) corresponds to a point *p^v* ∈ R*^d* ;

つひい

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (*d*, *D*, *m*) if

- every vertex *v* ∈ *V*(H) corresponds to a point *p^v* ∈ R*^d* ;
- whether $(i_1, \ldots, i_r) \in {V \choose r}$ $\binom{V}{I}$ forms an edge depends only on the ${\sf sign\text{-}pattern\ of}\ f_1,\ldots,\widehat{f_m\ on}\ p:=[p_{i_1},\ldots,p_{i_r}]\in\mathbb R^{rd}.$

つひい

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (*d*, *D*, *m*) if

- every vertex *v* ∈ *V*(H) corresponds to a point *p^v* ∈ R*^d* ;
- whether $(i_1, \ldots, i_r) \in {V \choose r}$ $\binom{V}{I}$ forms an edge depends only on the ${\sf sign\text{-}pattern\ of}\ f_1,\ldots,\widehat{f_m\ on}\ p:=[p_{i_1},\ldots,p_{i_r}]\in\mathbb R^{rd}.$

Here, each *fⁱ* : R*rd* → R is a polynomial of degree at most *D*.

つひひ

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (*d*, *D*, *m*) if

- every vertex *v* ∈ *V*(H) corresponds to a point *p^v* ∈ R*^d* ;
- whether $(i_1, \ldots, i_r) \in {V \choose r}$ $\binom{V}{I}$ forms an edge depends only on the ${\sf sign\text{-}pattern\ of}\ f_1,\ldots,\widehat{f_m\ on}\ p:=[p_{i_1},\ldots,p_{i_r}]\in\mathbb R^{rd}.$

Here, each *fⁱ* : R*rd* → R is a polynomial of degree at most *D*.

• **Sign-pattern**: $sign(f_1(p)), \ldots, sign(f_m(p)) \in \{0, +, -\}^m$.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

• What if we focus on graphs defined by geometry?

Definition (Semi-algebraic hypergraphs)

An *r*-uniform hypergraph H is called **semi-algebraic** of **complexity** (*d*, *D*, *m*) if

- every vertex *v* ∈ *V*(H) corresponds to a point *p^v* ∈ R*^d* ;
- whether $(i_1, \ldots, i_r) \in {V \choose r}$ $\binom{V}{I}$ forms an edge depends only on the ${\sf sign\text{-}pattern\ of}\ f_1,\ldots,\widehat{f_m\ on}\ p:=[p_{i_1},\ldots,p_{i_r}]\in\mathbb R^{rd}.$

Here, each *fⁱ* : R*rd* → R is a polynomial of degree at most *D*.

- **Sign-pattern**: $sign(f_1(p)), \ldots, sign(f_m(p)) \in \{0, +, -\}^m$.
- Intersection graphs of certain geometric objects.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

 \bullet Given N points in \mathbb{R}^2 (in general position), we are going to capture the subsets forming convex hulls.

 \rightarrow \equiv \rightarrow

∢ □ ▶ к 伺 ▶ к ∃ ▶

- \bullet Given N points in \mathbb{R}^2 (in general position), we are going to capture the subsets forming convex hulls.
- Assume the *x*-coordinates are increasing.

4 **E** F

- \bullet Given N points in \mathbb{R}^2 (in general position), we are going to capture the subsets forming convex hulls.
- Assume the *x*-coordinates are increasing.
- For *i* < *j* < *k*, form an edge if det(*p^j* − *pⁱ* , *p^k* − *pi*) > 0.

- \bullet Given N points in \mathbb{R}^2 (in general position), we are going to capture the subsets forming convex hulls.
- Assume the *x*-coordinates are increasing.
- For *i* < *j* < *k*, form an edge if det(*p^j* − *pⁱ* , *p^k* − *pi*) > 0.

cliques \leftrightarrow cups, independent sets \leftrightarrow caps.

- \bullet Given N points in \mathbb{R}^2 (in general position), we are going to capture the subsets forming convex hulls.
- Assume the *x*-coordinates are increasing.
- For *i* < *j* < *k*, form an edge if det(*p^j* − *pⁱ* , *p^k* − *pi*) > 0.

- cliques \leftrightarrow cups, independent sets \leftrightarrow caps.
- It is of complexity $(2, 2, 1)$.

Ramsey Numbers for Semi-algebraic Hypergraphs

Definition

 $R_r^{(d,D,m)}$ *r* (*s*, *n*) := the smallest *N* s.t. any *r***-uniform semi-algebraic hypergraph** of complexity (*d*, *D*, *m*) on *N* vertices contains a clique of size *s* or an independent set of size *n*.

Ramsey Numbers for Semi-algebraic Hypergraphs

Definition

 $R_r^{(d,D,m)}$ *r* (*s*, *n*) := the smallest *N* s.t. any *r***-uniform semi-algebraic hypergraph** of complexity (*d*, *D*, *m*) on *N* vertices contains a clique of size *s* or an independent set of size *n*.

Theorem (Alon, Pach, Pinchasi, Radoiˇci´c and Sharir '05)

 $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(n,n) = n^{\Theta(1)}.$

つひい

Ramsey Numbers for Semi-algebraic Hypergraphs

Definition

 $R_r^{(d,D,m)}$ *r* (*s*, *n*) := the smallest *N* s.t. any *r***-uniform semi-algebraic hypergraph** of complexity (*d*, *D*, *m*) on *N* vertices contains a clique of size *s* or an independent set of size *n*.

Theorem (Alon, Pach, Pinchasi, Radoiˇci´c and Sharir '05)

 $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(n,n) = n^{\Theta(1)}.$

Theorem (Conlon, Fox, Pach, Sudakov and Suk '14)

$$
R_r^{(d,D,m)}(n,n) = \text{tw}_{r-1}(n^{\Theta(1)}).
$$

Zhihan Jin, Istv´an Tomon (ETH, Ume˚a) [Semi-algebraic Ramsey Numbers](#page-0-0) EURO2023 7 / 12

 200

イロメス 御き スミメスきょう

• $ES(n) :=$ the smallest N s.t. any N points in \mathbb{R}^2 (in general position) contains *n* elements forming a convex polygon.

4 D F

• $ES(n) :=$ the smallest N s.t. any N points in \mathbb{R}^2 (in general position) contains *n* elements forming a convex polygon.

Theorem (Erd˝os and Szekeres '35)

 $ES(n) = 2^{\Theta(n)}$.

• $ES(n) :=$ the smallest N s.t. any N points in \mathbb{R}^2 (in general position) contains *n* elements forming a convex polygon.

Theorem (Erd˝os and Szekeres '35) $ES(n) = 2^{\Theta(n)}$.

Recall: cups \leftrightarrow cliques, caps \leftrightarrow independent sets.

• $ES(n) :=$ the smallest N s.t. any N points in \mathbb{R}^2 (in general position) contains *n* elements forming a convex polygon.

Theorem (Erd˝os and Szekeres '35) $ES(n) = 2^{\Theta(n)}$.

Recall: cups \leftrightarrow cliques, caps \leftrightarrow independent sets.

$$
ES(n) \leq R_3^{(2,2,1)}(n,n) < 2^{n^{O(1)}}.
$$

• $ES(n) :=$ the smallest N s.t. any N points in \mathbb{R}^2 (in general position) contains *n* elements forming a convex polygon.

• Recall: cups \leftrightarrow cliques, caps \leftrightarrow independent sets.

$$
ES(n) \leq R_3^{(2,2,1)}(n,n) < 2^{n^{O(1)}}.
$$

• In contrast,
$$
R_3(n, n) = 2^{2^{\mathcal{O}(n)}}
$$
.

• What about the asymmetric case, i.e. when *s* is a constant?

4 D F

- What about the asymmetric case, i.e. when *s* is a constant?
- $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(s,n) = n^{\Theta(1)}$, good enough.

- What about the asymmetric case, i.e. when *s* is a constant?
- $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(s,n) = n^{\Theta(1)}$, good enough.
- The **critical case** is again when $r = 3$.

- What about the asymmetric case, i.e. when *s* is a constant?
- $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(s,n) = n^{\Theta(1)}$, good enough.
- The **critical case** is again when $r = 3$.

Conjecture (Conlon, Fox, Pach, Sudakov and Suk '14)

 $R_3^{(d,D,m)}$ $n_3^{(a,D,m)}(s,n) = n^{\mathcal{O}(1)}.$

- What about the asymmetric case, i.e. when *s* is a constant?
- $R_2^{(d,D,m)}$ $n_2^{(a,D,m)}(s,n) = n^{\Theta(1)}$, good enough.
- The **critical case** is again when $r = 3$.

Conjecture (Conlon, Fox, Pach, Sudakov and Suk '14)

$$
R_3^{(d,D,m)}(s,n) = n^{\mathcal{O}(1)}.
$$

•
$$
R_3^{(1,D,m)}(s,n) = 2^{\log^{O(1)}(n)}
$$
 by CFPSS, $R_3^{(d,D,m)}(s,n) = 2^{n^{O(1)}}$ by Suk.

• What about the asymmetric case, i.e. when *s* is a constant?

•
$$
R_2^{(d,D,m)}(s,n) = n^{\Theta(1)}
$$
, good enough.

• The **critical case** is again when $r = 3$.

Conjecture (Conlon, Fox, Pach, Sudakov and Suk '14)

$$
R_3^{(d,D,m)}(s,n) = n^{\mathcal{O}(1)}.
$$

•
$$
R_3^{(1,D,m)}(s,n) = 2^{\log^{O(1)}(n)}
$$
 by CFPSS, $R_3^{(d,D,m)}(s,n) = 2^{n^{O(1)}}$ by Suk.

• We refuted this conjecture.

Theorem (J., Tomon '23)

$$
R_3^{(d,D,m)}(4,n) > n^{\log^{1/3-o(1)}(n)} = 2^{\log^{1.3}(n)}.
$$

• When all defining polynomials are linear functions $(D = 1)$.

 298

∢ ロ ▶ ィ 何 ▶ ィ ヨ

- When all defining polynomials are linear functions ($D = 1$).
- $\bullet\,$ Examples: intersection graphs of axis-parallel boxes in $\mathbb{R}^d.$

- When all defining polynomials are linear functions ($D = 1$).
- $\bullet\,$ Examples: intersection graphs of axis-parallel boxes in $\mathbb{R}^d.$

Theorem (J., Tomon '23) $R_r^{(d,1,m)}$ $\binom{(d,1,m)}{r}(n,n) < 2^{\mathcal{O}(n^{4r^2m^2})}.$

- When all defining polynomials are linear functions ($D = 1$).
- $\bullet\,$ Examples: intersection graphs of axis-parallel boxes in $\mathbb{R}^d.$

Theorem (J., Tomon '23)

$$
R_r^{(1,1,1)}(n,n) > 2^{\Omega(n^{r/2-1})} \text{ for even } r \text{'s.}
$$

Open problems

Conjecture

$$
R_3^{(d,D,m)}(s,n) < 2^{\log^{O(1)}(n)}.
$$

$$
0.2023 \t\t 11/
$$

 299

イロトス個 トメ ヨトメ ヨト 一番

Open problems

Conjecture

$$
R_3^{(d,D,m)}(s,n) < 2^{\log^{O(1)}(n)}.
$$

Conjecture

Is it true that $R_r^{(d,2,m)}$ $\binom{n}{r}$ (n,n) $<$ tw $\binom{n^{O(1)}}{r}$ for absolute constant *k*?

 299

イロメス 御き スミメスきょう

The End

Questions? Comments?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900